首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we consider a single server queue with Poisson arrivals and general service distributions in which the service distributions are changed cyclically according to customer sequence number. This model extends a previous study that used cyclic exponential service times to the treatment of general service distributions. First, the stationary probability generating function and the average number of customers in the system are found. Then, a single vacation queueing system with aN-limited service policy, in which the server goes on vacation after servingN consecutive customers is analyzed as a particular case of our model. Also, to increase the flexibility of using theM/G/1 model with cyclic service times in optimization problems, an approximation approach is introduced in order to obtain the average number of customers in the system. Finally, using this approximation, the optimalN-limited service policy for a single vacation queueing system is obtained.On leave from the Department of Industrial Engineering, Iran University of Science and Technology, Narmak, Tehran 16844, Iran.  相似文献   

2.
Dudin  A. 《Queueing Systems》1998,30(3-4):273-287
This paper deals with the problem of the optimal service rate control in the system with BMAP (Batch Markovian Arrival Process) arrival stream. An algorithm for the computation of the embedded stationary queue length distribution is developed. The procedure for the cost criteria calculation is elaborated for any fixed parameters of the multithreshold control policy. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
An M/G/1 retrial queue with two-phase service and feedback is studied in this paper, where the server is subject to starting failures and breakdowns during service. Primary customers get in the system according to a Poisson process, and they will receive service immediately if the server is available upon arrival. Otherwise, they will enter a retrial orbit and are queued in the orbit in accordance with a first-come-first-served (FCFS) discipline. Customers are allowed to balk and renege at particular times. All customers demand the first “essential” service, whereas only some of them demand the second “multi-optional” service. It is assumed that the retrial time, service time and repair time of the server are all arbitrarily distributed. The necessary and sufficient condition for the system stability is derived. Using a supplementary variable method, the steady-state solutions for some queueing and reliability measures of the system are obtained.  相似文献   

4.
Subramanian  Vijay  Srikant  R. 《Queueing Systems》2000,34(1-4):215-236
We consider the problem of estimating tail probabilities of waiting times in statistical multiplexing systems with two classes of sources – one with high priority and the other with low priority. The priority discipline is assumed to be nonpreemptive. Exact expressions for the transforms of these quantities are derived assuming that packet or cell streams are generated by Markovian Arrival Processes (MAPs). Then a numerical investigation of the large-buffer asymptotic behavior of the the waiting-time distribution for low-priority sources shows that these asymptotics are often non-exponential.  相似文献   

5.
We consider a finite capacity queue with Markovian arrivals, in which the service rates are controlled by two pre-determined thresholds, M and N. The service rate is increased when the buffer size exceeds N and then brought back to normal service rate when the buffer size drops to M. The normal and fast service times are both assumed to be of phase type with representations (β, S), and β θS), respectively, where θ>1. For this queueing model, steady state analysis is performed. The server duration in normal as well as fast periods is shown to be of phase type. The departure process is modelled as a MAP and the parameter matrices of the MAP are identified. Efficient algorithms for computing system performance measures are presented. We also discuss an optimization problem and present an efficient algorithm for arriving at an optimal solution. Some numerical examples are discussed.  相似文献   

6.
This note presents a two-moment approximation for the conditional average waiting time in the standard multi-server queue and an approximation for the tail probabilities of the conditional waiting time distribution in the standard single-server queue. These approximations have been tested by extensive numerical experiments.  相似文献   

7.
Tao Yang  Hui Li 《Queueing Systems》1994,16(1-2):83-96
In this paper, we study a retrial queueing model with the server subject to starting failures. We first present the necessary and sufficient condition for the system to be stable and derive analytical results for the queue length distribution as well as some performance measures of the system in steady state. We show that the general stochastic decomposition law forM/G/1 vacation models also holds for the present system. Finally, we demonstrate that a few well known queueing models are special cases of the present model and discuss various interpretations of the stochastic decomposition law when applied to each of these special cases.Partially supported by the Natural Sciences and Engineering Research Council of Canada, grant OGP0046415.Partially supported by internal research grant of Mount Saint Vincent University.  相似文献   

8.
This paper studies a discrete-time Geo/G/1 retrial queue where the server is subject to starting failures. We analyse the Markov chain underlying the regarded queueing system and present some performance measures of the system in steady-state. Then, we give two stochastic decomposition laws and find a measure of the proximity between the system size distributions of our model and the corresponding model without retrials. We also develop a procedure for calculating the distributions of the orbit and system size as well as the marginal distributions of the orbit size when the server is idle, busy or down. Besides, we prove that the M/G/1 retrial queue with starting failures can be approximated by its discrete-time counterpart. Finally, some numerical examples show the influence of the parameters on several performance characteristics. This work is supported by the DGINV through the project BFM2002-02189.  相似文献   

9.
Tao Yang  Hui Li 《Queueing Systems》1995,21(1-2):199-215
In this paper, we study the steady-state queue size distribution of the discrete-timeGeo/G/1 retrial queue. We derive analytic formulas for the probability generating function of the number of customers in the system in steady-state. It is shown that the stochastic decomposition law holds for theGeo/G/1 retrial queue. Recursive formulas for the steady-state probabilities are developed. Computations based on these recursive formulas are numerically stable because the recursions involve only nonnegative terms. Since the regularGeo/G/1 queue is a special case of theGeo/G/1 retrial queue, the recursive formulas can also be used to compute the steady-state queue size distribution of the regularGeo/G/1 queue. Furthermore, it is shown that a continuous-timeM/G/1 retrial queue can be approximated by a discrete-timeGeo/G/1 retrial queue by dividing the time into small intervals of equal length and the approximation approaches the exact when the length of the interval tends to zero. This relationship allows us to apply the recursive formulas derived in this paper to compute the approximate steady-state queue size distribution of the continuous-timeM/G/1 retrial queue and the regularM/G/1 queue.Partially supported by the Natural Sciences and Engineering Research Council of Canada through grant OGP0046415.Partially supported by the Natural Sciences and Engineering Research Council of Canada through grant OGP0105828.  相似文献   

10.
Lee  Duan-Shin 《Queueing Systems》1997,27(1-2):153-178
In this paper we analyze a discrete-time single server queue where the service time equals one slot. The numbers of arrivals in each slot are assumed to be independent and identically distributed random variables. The service process is interrupted by a semi-Markov process, namely in certain states the server is available for service while the server is not available in other states. We analyze both the transient and steady-state models. We study the generating function of the joint probability of queue length, the state and the residual sojourn time of the semi-Markov process. We derive a system of Hilbert boundary value problems for the generating functions. The system of Hilbert boundary value problems is converted to a system of Fredholm integral equations. We show that the system of Fredholm integral equations has a unique solution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
We analyse a single‐server queue in which the server goes through alternating periods of vacation and work. In each work period, the server attends to the queue for no more than a fixed length of time, T. The system is a gated one in which the server, during any visit, does not attend to customers which were not in the system before its visit. As soon as all the customers within the gate have been served or the time limit has been reached (whichever occurs first) the server goes on a vacation. The server does not wait in the queue if the system is empty at its arrival for a visit. For this system the resulting Markov chain, of the queue length and some auxiliary variables, is level‐dependent. We use special techniques to carry out the steady state analysis of the system and show that when the information regarding the number of customers in the gate is not critical we are able to reduce this problem to a level‐independent Markov chain problem with large number of boundary states. For this modified system we use a hybrid method which combines matrix‐geometric method for the level‐independent part of the system with special solution method for the large complex boundary which is level‐dependent. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Discrete-event systems to which the technique of infinitesimal perturbation analysis (IPA) is applicable are natural candidates for optimization via a Robbins-Monro type stochastic approximation algorithm. We establish a simple framework for single-run optimization of systems with regenerative structure. The main idea is to convert the original problem into one in which unbiased estimators can be derived from strongly consistent IPA gradient estimators. Standard stochastic approximation results can then be applied. In particular, we consider the GI/G/1 queue, for which IPA gives strongly consistent estimators for the derivative of the mean system time. Convergence (w.p.1) proofs for the problem of minimizing the mean system time with respect to a scalar service time parameter are presented.  相似文献   

13.
We use the Method of Collective Marks to analyze some time-dependent processes in theM/G/1 queue with single and multiple vacations. With the server state specified at a fixed timet>0, the Laplace transforms with respect tot of mixed transforms for the joint distribution of the number of departures by timet, the queue length, the virtual waiting time, the elapsed and remaining service/vacation times at timet are derived by means of probabilistic interpretations. The Laplace-Stieltjes transform of the virtual waiting time at timet is also given. Some well known results are special cases.This research was supported by the University of Amsterdam.  相似文献   

14.
We consider a discrete-time Geo/G/1 retrial queue with preemptive resume, collisions of customers and general retrial times. We analyze the Markov chain underlying the considered queueing system and derive its ergodicity condition. Using generating function technique, the system state distribution as well as the orbit size and the system size distributions are studied. Some interesting and important performance measures are obtained. Besides, the stochastic decomposition property is investigated. Finally, some numerical examples are provided.  相似文献   

15.
The finite capacity queues, GI/PH/1/N and PH/G/1/N, in which customers are served in groups of varying sizes were recently introduced and studied in detail by the author. In this paper we consider a finite capacity queue in which arrivals are governed by a particular Markov renewal process, called a Markovian arrival process (MAP). With general service times and with the same type of service rule, we study this finite capacity queueing model in detail by obtaining explicit expressions for (a) the steady-state queue length densities at arrivals, at departures and at arbitrary time points, (b) the probability distributions of the busy period and the idle period of the server and (c) the Laplace-Stieltjes transform of the stationary waiting time distribution of an admitted customer at points of arrivals. Efficient algorithmic procedures for computing the steady-state queue length densities and other system performance measures when services are of phase type are discussed. An illustrative numerical example is presented.  相似文献   

16.
This paper is concerned with a discrete-time Geo/G/1 retrial queue with preferred, impatient customers and general retrial times. We analyze the Markov chain underlying the considered queueing system and derive its ergodicity condition. The system state distribution as well as the orbit size and the system size distributions are obtained in terms of their generating functions. These generating functions yield exact expressions for different performance measures. Besides, the stochastic decomposition property and the corresponding continuous-time queueing system are investigated. Finally, some numerical examples are provided to illustrate the effect of priority and impatience on several performance characteristics of the system.  相似文献   

17.
An important interface between stochastic models and actual systems comes in estimating values for model parameters using “real world” data. This interface between models and systems is studied for one of the most elementary stochastic systems, the M/M/1 queue. Estimating arrival rates and service rates results in a notable discrepancy between the state distribution for the model (estimated parameters) and the state distribution for the actual system (known parameters). Also, the expected number of customers in the model is infinite regardless of the (unknown) value of the actual traffic intensity. The truth of this assertion is obvious if one allows estimated traffic intensities to equal or exceed one. However, it is shown that the mean for the model is infinite even if the estimated traffic intensity is restricted to be strictly less than one.  相似文献   

18.
An M/G/1-type queuing model with service times depending on queue length   总被引:1,自引:0,他引:1  
A study is made of an M/G/1-type queuing model in which customers receive one type of service until such time as, at the end of a service, the queue size is found to exceed a given value N, N ≥ 1. Then a second type of service is put into effect and remains in use until the queue size is reduced to a fixed value K, 0 ≤ K ≤ N. Equations are derived for the stationary probabilities both at departure times and at general times. An algorithm is developed that allows the rapid computation of the mean queue length and some important probabilities.  相似文献   

19.
The Markovian Arrival Process (MAP), which contains the Markov Modulated Poisson Process (MMPP) and the Phase-Type (PH) renewal processes as special cases, is a convenient traffic model for use in the performance analysis of Asynchronous Transfer Mode (ATM) networks. In ATM networks, packets are of fixed length and the buffering memory in switching nodes is limited to a finite numberK of cells. These motivate us to study the MAP/D/1/K queue. We present an algorithm to compute the stationary virtual waiting time distribution for the MAP/D/1/K queue via rational approximations for the deterministic service time distribution in transform domain. These approximations include the well-known Erlang distributions and the Padé approximations that we propose. Using these approximations, the solution for the queueing system is shown to reduce to the solution of a linear differential equation with suitable boundary conditions. The proposed algorithm has a computational complexity independent of the queue storage capacityK. We show through numerical examples that, the idea of using Padé approximations for the MAP/D/1/K queue can yield very high accuracy with tractable computational load even in the case of large queue capacities.This work was done when the author was with the Bilkent University, Ankara, Turkey and the research was supported by TÜBITAK under Grant No. EEEAG-93.  相似文献   

20.
This paper deals with a modified M/G/1 queueing system with finite capacity and a walking server. Units waiting are served up to a limited number before the server takes a vacation time and later returns to the queue again. A computational method for the stationary queue length distribution is developed and illustrated with a numerical example. The model was motivated by similar channel access mechanisms in token-ring local area networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号