首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Aggregation and deposition kinetics of fullerene (C60) nanoparticles   总被引:2,自引:0,他引:2  
The aggregation and deposition kinetics of fullerene C60 nanoparticles have been investigated over a wide range of monovalent and divalent electrolyte concentrations by employing time-resolved dynamic light scattering (DLS) and quartz crystal microbalance (QCM), respectively. Aggregation kinetics of the fullerene nanoparticles exhibited reaction-limited (slow) and diffusion-limited (fast) regimes in the presence of both electrolytes, having critical coagulation concentrations (CCC) of 120 and 4.8 mM for the monovalent (NaCl) and divalent (CaCl2) salts, respectively. The measured stability ratios of the aggregating fullerene nanoparticles were in very good agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, with a derived Hamaker constant of 6.7 x 10-21 J for the fullerene nanoparticles in aqueous medium. For the deposition kinetics studies, the rate of fullerene nanoparticle deposition increased with increasing electrolyte concentrations, as was indicated in the aggregation kinetics results. However, at electrolyte concentrations approaching or exceeding the CCC, the rate of deposition dropped sharply due to significant concurrent aggregation of the fullerene nanoparticles. The deposition of the fullerene nanoparticles was further shown to be mostly irreversible, with immediate detachment of the nanoparticles observed only when exposed to a solution of high pH.  相似文献   

2.
The influence of humic acid and alginate, two major components of natural organic matter (NOM), on deposition kinetics of extracellular polymeric substances (EPS) on silica was examined in both NaCl and CaCl(2) solutions over a wide range of environmentally relevant ionic strengths utilizing a quartz crystal microbalance with dissipation. Deposition kinetics of both soluble EPS and bound EPS extracted from four bacterial strains with different characteristics was investigated. EPS deposition on humic acid-coated silica surfaces was found to be much lower than that on bare silica surfaces under all examined conditions. In contrast, pre-coating the silica surfaces with alginate enhanced EPS deposition in both NaCl and CaCl(2) solutions. More repulsive electrostatic interaction between EPS and surface contributed to the reduced EPS deposition on humic acid-coated silica surface. The trapping effect induced by the rough alginate layer resulted in the greater EPS deposition on alginate-coated surfaces in NaCl solutions, whereas surface heterogeneities on alginate layer facilitated favorable interactions with EPS in CaCl(2) solutions. The presence of dissolved background humic acid and alginate in solutions both significantly retarded EPS deposition on silica surfaces due to the greater steric and electrostatics repulsion.  相似文献   

3.
New kinds of solid fuels and propellants comprised of nanomaterials are making their way into civilian and military applications yet the impact of their release on the environment remains largely unknown. One such material is nano boron, a promising solid fuel and propellant. The fate and transport of nano boron under various aquatic systems was investigated in aggregation and deposition experiments. Column experiments were performed to examine the effects of electrolyte concentration and flow velocity on the transport of boron nanoparticles under saturated conditions, whereas aggregation tests were conducted to assess the effects of electrolytes on the aggregation of the boron nanoparticles. Aggregation tests indicated the presence of different reaction-controlled and diffusion-controlled regimes and yielded critical coagulation concentrations (CCC) of 200 mM, 0.7 mM and 1.5 mM for NaCl, CaCl(2), and MgCl(2), respectively. Aggregation and deposition experimental data corresponded with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) model and the constant attachment efficiency filtration model, respectively. Theoretical calculations indicated that both the primary and secondary energy minima play important roles in the deposition of nano boron in sand columns.  相似文献   

4.
The deposition kinetics of RNA extracted from both virus and bacteria on silica surfaces were examined in both monovalent (NaCl) and divalent (CaCl(2)) solutions under a wide range of environmentally relevant ionic strength and pH conditions by utilizing a quartz crystal microbalance with dissipation (QCM-D). To better understand the RNA deposition mechanisms, QCM-D data were complemented by diffusion coefficients and zeta potentials of RNA as a function of examined solution chemistry conditions. Favorable deposition of RNA on poly-l-lysine-coated (positively charged) silica surfaces was governed by the convective-diffusive transport of RNA to the surfaces. The deposition kinetics of RNA on bare silica surfaces were controlled by classic Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions. The presence of divalent cations (Ca(2+)) in solutions greatly enhanced the deposition kinetics of RNA on silica surfaces. Solution pH also affected the deposition behavior of RNA on silica surfaces. Release experiments showed that detachment of RNA from silica surfaces was significant in NaCl solutions, whereas, the deposited RNA on silica surfaces in CaCl(2) solutions was more likely to be irreversible.  相似文献   

5.
The significance of natural organic matter (NOM, both humic acid and alginate) on the transport and deposition kinetics of ZnO nanoparticles (NPs) in irregular quartz sand was examined by direct comparison of both breakthrough curves and retained profiles with NOM present in NPs suspension versus those obtained without NOM. Packed column experiments were conducted in both NaCl and CaCl(2) solutions under a series of environmentally relevant ionic strengths. Under all examined conditions, breakthrough plateaus with NOM even at concentration as low as 1mgL(-1) of total organic carbon (TOC) were higher than those without NOM, indicating that presence of NOM in NPs suspensions enhanced ZnO NPs transport. Although hyper-exponential retained profiles were observed both in the presence and absence of NOM, the amount of retained ZnO NPs acquired in the presence of NOM decreased slowly as the transport distance increased. Straining induced by concurrent aggregation is found to cause the hyper-exponential decrease. In the presence of NOM, electrosteric interaction effectively reduced the ZnO NPs deposition on collector surfaces and NPs-NPs aggregation. Subsequently, the amount of NPs that jammed in the column inlet in the absence of NOM were markedly decreased, which therefore exhibited as flatter retained profiles.  相似文献   

6.
This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO(2)) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical composition). Used in the study were various types of commercially available TiO(2) nanoparticles: three spherical anatase (nominal diameters of 5, 10, and 50 nm) and two rutile nanoparticles (10×40 and 30×40 nm). The 50 nm anatase and 10×40 nm rutile showed higher stability in deionized water and 5 mM NaCl solutions at pH 7 than the 5, and 10 nm anatase nanoparticles in sedimentation experiments. In aggregation experiments, critical coagulation concentration values for the 50 nm anatase were the highest, followed by the 10×40 nm rutile and the 5 nm anatase nanoparticles in NaCl and CaCl(2) solutions. The aggregation kinetics was fitted reasonably well with the Derjaguin-Landau-Verwey-Overbeek (DLVO) equations for the TiO(2) nanoparticles tested. Results showed that crystallinity and morphology are not influential factors in determining the stability of TiO(2) nanoparticle suspensions; however, the differences in their chemical compositions, notably, the varying concentrations of impurities (i.e., silicon and phosphorus) in the pristine materials, determined the surface charge and therefore the sedimentation and aggregation of TiO(2) nanoparticles in the aqueous phase.  相似文献   

7.
The early stage aggregation kinetics of fullerene C60 nanoparticles were investigated in the presence of Suwannee River humic acid and common monovalent and divalent electrolytes through time-resolved dynamic light scattering (DLS). In the absence of humic acid, the aggregation behavior of the fullerene nanoparticles in the presence of NaCl, MgCl2, and CaCl2 was found to be consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability. In the presence of humic acid and NaCl or MgCl2 electrolytes, the adsorbed humic acid on the fullerene nanoparticles led to steric repulsion, which effectively stabilized the nanoparticle suspension. This behavior manifested in a dramatic drop in the rate of aggregation, an increase in the critical coagulation concentration (CCC), and an attained value of less than unity for the inverse stability ratio (or attachment efficiency) at high MgCl2 concentrations. While the increase in the nanoparticle stability was similarly observed in the presence of humic acid at low CaCl2 concentrations, enhanced aggregation occurred at higher CaCl2 concentrations. Measurement of scattered light intensities over time indicated significant aggregation of the humic acid macromolecules in solutions of high CaCl2 concentrations. Transmission electron microscopy (TEM) imaging of the fullerene aggregate structures in the presence of humic acid revealed that bridging of the fullerene nanoparticles and aggregates by the humic acid aggregates is the likely mechanism for the enhanced aggregation at high CaCl2 concentrations.  相似文献   

8.
Bare silver nanoparticles with diameters of 82 ± 1.3 nm were synthesized by the reduction of the Ag(NH(3))(2)(+) complex with D-maltose, and their morphology, crystalline structure, UV-vis spectrum, and electrophoretic mobilities were determined. Dynamic light scattering was employed to assess early stage aggregation kinetics by measuring the change in the average hydrodynamic diameter of the nanoparticles with time over a range of electrolyte types (NaCl, NaNO(3), and CaCl(2)) and concentrations. From this the critical coagulation concentration values were identified as 30, 40, and 2 mM for NaNO(3), NaCl, and CaCl(2), respectively. Although the silver nanoparticles were observed to dissolve in all three electrolyte solutions, the aggregation results were still consistent with classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The dissolution of the silver nanoparticles, which were coated with a layer of Ag(2)O, was highly dependent on the electrolyte type and concentration. In systems with Cl(-) a secondary precipitate, likely AgCl, also formed and produced a coating layer that incorporated the silver nanoparticles. Aggregation of the silver nanoparticles was also examined in the presence of Nordic aquatic fulvic acid and was little changed compared to that evaluated under identical fulvic acid-free conditions. These results provide a fundamental basis for further studies evaluating the environmental fate of silver nanoparticles in natural aquatic systems.  相似文献   

9.
Determining the fate of manufactured nanomaterials in the environment is contingent upon understanding how stabilizing agents influence the stability of nanoparticles in aqueous systems. In this study, the aggregation and dissolution tendencies of uncoated silver nanoparticles and the same particles coated with three common coating agents, trisodium citrate, sodium dodecyl sulfate (SDS), and Tween 80 (Tween), were evaluated. Early stage aggregation kinetics of the uncoated and coated silver nanoparticles were assessed by dynamic light scattering over a range of electrolyte types (NaCl, NaNO(3), and CaCl(2)) and concentrations that span those observed in natural waters. Although particle dissolution was observed, aggregation of all particle types was still consistent with classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation of citrate-coated particles and SDS-coated particles were very similar to that for the uncoated particles, as the critical coagulation concentrations (CCC) of the particles in different electrolytes were all approximately the same (40 mM NaCl, 30 mM NaNO(3), and 2 mM CaCl(2)). The Tween-stabilized particles were significantly more stable than the other particles, however, and in NaNO(3) aggregation was not observed up to an electrolyte concentration of 1 M. Differences in the rate of aggregation under diffusion-limited aggregation conditions at high electrolyte concentrations for the SDS and Tween-coated particles, in combination with the moderation of their electrophoretic mobilities, suggest SDS and Tween imparted steric interactions to the particles. The dissolution of the silver nanoparticles was inhibited by the SDS and Tween coatings, but not by the citrate coating, and in chloride-containing electrolytes a secondary precipitate of AgCl was observed bridging the individual particles. These results indicate that coating agents could significant influence the fate of silver nanoparticles in aquatic systems, and in some cases these stabilizers may completely prevent particle aggregation.  相似文献   

10.
氧化时间对多壁纳米碳管结构与性能的影响   总被引:2,自引:0,他引:2  
氧化时间对多壁纳米碳管结构与性能的影响;碳纳米管; 氧化; 透射电镜; 核磁共振; 电阻  相似文献   

11.
The interaction between mucin and ions has been investigated by employing the quartz crystal microbalance technique with measurement of energy dissipation. The study was partially aimed at understanding the adsorption of mucin on surfaces with different chemistry, and for this purpose, surfaces exposing COOH, OH, and CH(3) groups were prepared. Mucin adsorbed to all three types of functionalized gold surfaces. Adsorption to the hydrophobic surface and to the charged hydrophilic surface (COOH) occured with high affinity despite the fact that in the latter case both mucin and the surface were negatively charged. On the uncharged hydrophilic surface exposing OH groups, the adsorption of mucin was very low. Another aim was to elucidate conformational changes induced by electrolytes on mucin layers adsorbed on hydrophobic surfaces from 30 mM NaNO(3). To this end, we investigated the effect of three electrolytes with increasing cation valance: NaCl, CaCl(2) and LaCl(3). At low NaCl concentrations, the preadsorbed layer expands, whereas at higher concentrations of NaCl the layer becomes more compact. This swelling/compacting of the mucin layer is fully reversible for NaCl. When the mucin layer instead is exposed to CaCl(2) or LaCl(3), compaction is observed at 1 mM. For CaCl(2), this process is only partially reversible, and for LaCl(3), the changes are irreversible within the time frame of the experiment. Finally, mucin interaction with the DTAB cationic surfactant in an aqueous solution of different electrolytes was evaluated with turbidimetry measurements. It is concluded that the electrolytes used in this work screen the association between mucin and DTAB and that the effect increases with increasing cation valency.  相似文献   

12.
The stability of the sodium and calcium forms of montmorillonite was studied at different NaCl and CaCl2 concentrations. The aggregation kinetics was determined from the decrease in particle concentration with time at different electrolyte concentrations. The DLVO theory defines the critical coagulation concentration (CCC) value as the electrolyte concentration that balances the attractive and repulsive potential energies between the particles, making aggregation diffusion-controlled. Therefore CCC values were obtained by extrapolation of the aggregation rate constants measured as a function of ionic strength to conditions where the rate constant value is determined by diffusion only. When the electrolyte was CaCl2, the CCC value was found to be approximately two orders of magnitude lower than the CCC values obtained using NaCl as electrolyte.  相似文献   

13.
The stability and aggregation behavior of iron oxide colloids in natural waters play an important role in controlling the fate, transport, and bioavailability of trace metals. Time-resolved dynamic light scattering experiments were carried out in a study of the aggregation kinetics and aggregate structure of natural organic matter (NOM) coated hematite colloids and bare hematite colloids. The aggregation behavior was examined over a range of solution chemistries, by adjusting the concentration of the supporting electrolyte-NaCl, CaCl2, or simulated seawater. With the solution pH adjusted so that NOM-coated and bare hematite colloids were at the same zeta potential, we observed a significant difference in colloid stability which results from the stability imparted to the colloids by the adsorbed NOM macromolecules. This enhanced stability of NOM-coated hematite colloids was not observed with CaCl2. Aggregate form expressed as fractal dimension was determined for both NOM-coated and bare hematite aggregates in both NaCl and CaCl2. The fractal dimensions of aggregates formed in the diffusion-limited regime indicate slightly more loosely packed aggregates for bare hematite than theory predicts. For NOM-coated hematite, a small decrease in fractal dimension was observed when the solution composition changed from NaCl to CaCl2. For systems in the reaction-limited regime, the measured fractal dimensions agreed with those in the literature. Colloid aggregation was also studied in synthetic seawater, a mixed cation system to simulate estuarine mixing. Those results describe the important phenomena of iron oxide aggregation and sedimentation in estuaries. When compared to field data from the Mullica Estuary, U.S.A., it is shown that collision efficiency is a good predictor of the iron removal in this natural system.  相似文献   

14.
The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO(2), rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and ion valence (NaCl vs CaCl(2)) comparable to the low end of environmentally relevant solution chemistry conditions. Solution chemistry was found to have a marked effect on the electrokinetic properties of NP aggregates and the sand and on the resulting extent of NP aggregate transport and retention in the porous media. Comparable transport and retention patterns were observed for NP aggregates in both NaCl and CaCl(2) solutions but at much lower ionic strength with CaCl(2). Transport experimental results showed temporal and spatial variations of NP aggregate deposition in the column. Specifically, the breakthrough curves displayed a transition from blocking to ripening shapes, and the NP retention profiles exhibited a shift of the maximum NP retention segment from the end toward the entrance of the column gradually with increasing ionic strength. Additionally, the deposition rates of the NP aggregates in both KCl and CaCl(2) solutions increased with ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Upon close examination of the results, it was found that the characteristics of the obtained transport breakthrough curves closely followed the general trends predicted by the DLVO interaction-energy calculations. However, the obtained NP retention profiles were found to deviate severely from the theory. We propose that a NP aggregate reconformation through collision between NP aggregates and sand grains reduced the repulsive interaction energies of NP-NP and NP-sand surfaces, consequently accelerating NP deposition with transport distance and facilitating approaching NP deposition onto NPs that had already been deposited. It is further suggested that TiO(2) NP transport and retention are determined by the combined influence of NP aggregate reconformation associated with solution chemistry, travel distance, and DLVO interactions of the system.  相似文献   

15.
The growth morphology and the kinetics of a thin film of Te on Au during electrochemical deposition at -62 mV (vs Ag/AgCl/3 M NaCl) have been studied. The deposition conditions are similar to those used previously by us to grow nanowires inside Au nanotubes by electrochemical deposition in the presence of Cd ions (Cd(2+)). By using electrochemical deposition on a planar Au electrode, we explored the growth of the Te film for two conditions: in the presence of Cd(2+) (0.1 mM TeO(2) + 1 mM CdSO(4) + 50 mM H(2)SO(4) solution) and in the absence of Cd(2+) (0.1 mM TeO(2) + 50 mM H(2)SO(4) solution). We used several surface investigation techniques to study the growth such as: in situ electrochemical atomic force microscopy (EC-AFM), in situ electrochemical surface plasmon resonance (EC-SPR), electrochemical methods, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). In the presence of Cd(2+), in situ electrochemical atomic microscopy showed that Cd(2+) acted as a mediator at the early deposition stage and caused smoothing of the Te deposit obtained. In the absence of Cd(2+), Te had an island growth. The electrochemical surface plasmon resonance showed that the deposit was characterized by a slower deposition rate in the presence of Cd(2+) than in the absence of Cd(2+). Additionally, the thickness of the film was evaluated using EC-AFM measurements, electrochemical stripping analysis, and EC-SPR. The results obtained from all three measurements agree well with the Te film obtained in the presence of Cd(2+), where a continuous and uniform film was formed. In the presence of Cd(2+), a Te film with a thickness of 1.04 nm and atomically flat surface was deposited on an ultraflat Au surface. The XPS spectrum showed no significant amount of Cd in the deposit, indicating that the Cd ion acted as a mediator and not as a co-deposition element.  相似文献   

16.
NMR spectra were collected for cross-linked poly(N-isopropylacrylamide), poly(NIPAM), hydrogels in the presence of NaCl and CaCl2 aqueous solutions. Intensity variations in the 1H NMR signals of the polymer provide insight into the phase transition process. These data were used to observe a two-stage phase transition process. Thermodynamic quantities were obtained from a van't Hoff analysis of the temperature-dependent equilibrium constants, which were derived from the NMR data. The Delta H degrees and Delta S degrees values for the hydrogel in D2O are 3.4 kJ/mol and 11.2 J/mol.K for stage I, which is attributed to the formation of hydrophobic bonds between neighboring isopropyl groups. The formation of hydrogen bonds during stage II yielded Delta H degrees and Delta S degrees values of 14.8 kJ/mol and 48.4 J/mol.K in D2O. However, the corresponding Delta H degrees values in 150 mM NaCl and 150 mM CaCl2 are reduced to 1.5 and 1.8 kJ/mol for stage I of the dehydration process. This corresponds to the known effect of salts on hydrophobic bond energetics. The value of Delta S degrees also decreased to 4.9 and 5.9 J/mol.K in NaCl and CaCl2 solutions, respectively. However, the thermodynamic values during stage II were only slightly affected by the salts. The lower temperatures required to induce spontaneous precipitation implies that Delta G degrees of precipitation is reduced. With our measurement of equilibrium thermodynamics, we see that 150 mM NaCl and CaCl2 solutions have a greater effect on hydrophobic bond formation associated with the phase transition process. In this manner, these salts aid in solvent reorganization necessary to form the hydrophobic bond, and this suggests that the formation of hydrophobic bonds is a strong determining factor in the stability of poly(NIPAM) hydrogels in water.  相似文献   

17.
采用强氧化性酸处理多壁碳纳米管(MWNTs),形成功能化的多壁碳纳米管(MWNTs-COOH)。用傅里叶红外光谱(FT-IR)对处理前后MWNTs的表面官能团进行了分析,并利用原位聚合法成功制备了聚(2,5-苯并噁唑)(ABPBO)/MWNTs-COOH纳米复合材料。结果表明:碳纳米管经过酸处理后,表面含有较多羰基和羟基极性官能团,在ABPBO基体中分散均匀;复合材料保持了ABPBO的优异耐高温性能,其力学性能和光物理性能也得到了很大的提高。  相似文献   

18.
The role of dipalmitoylphosphatic acid (DPPA) as a transfer promoter to enhance the Langmuir-Blodgett (LB) deposition of a dipalmitoylphosphatidylcholine (DPPC) monolayer at air/liquid interfaces was investigated, and the effects of Ca2+ ions in the subphase were discussed. The miscibility of the two components at air/liquid interfaces was evaluated by surface pressure-area per molecule isotherms, thermodynamic analysis, and by the direct observation of Brewster angle microscopy (BAM). Multilayer LB deposition behavior of the mixed DPPA/DPPC monolayers was then studied by transferring the monolayers onto hydrophilic glass plates at a surface pressure of 30 mN/m. The results showed that the two components, DPPA and DPPC, were miscible in a monolayer on both subphases of pure water and 0.2 mM CaCl2 solution. However, an exception occurs between X(DPPA)=0.2 and 0.5 at air/CaCl2-solution interface, where a partially miscible monolayer with phase separation may occur. Negative deviations in the excess area analysis were found for the mixed monolayer system, indicating the existence of attractive interactions between DPPA and DPPC molecules in the monolayers. The monolayers were stable at the surface pressure of 30 mN/m for the following LB deposition as evaluated from the area relaxation behavior. It was found that the presence of Ca2+ ions had a stabilization effect for DPPA-rich monolayers, probably due to the association of negatively charged DPPA molecules with Ca2+ ions. Moreover, the Ca2+ ions may enhance the adhesion of DPPA polar groups to a glass surface and the interactions between DPPA polar groups in the multilayer LB film structure. As a result, Y-type multilayer LB films containing DPPC could be fabricated from the mixed DPPA/DPPC monolayers with the presence of Ca2+ ions.  相似文献   

19.
Adsorption of anionic polyelectrolytes, sodium salts of carboxymethyl celluloses (CMCs) with different degrees of substitution (DS = 0.9 and 1.2), from aqueous electrolyte solutions onto regenerated cellulose surfaces was studied using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) experiments. The influence of both calcium chloride (CaCl(2)) and sodium chloride (NaCl) on CMC adsorption was examined. The QCM-D results demonstrated that CaCl(2) (divalent cation) caused significantly greater CMC adsorption onto regenerated cellulose surfaces than NaCl (monovalent cation) at the same ionic strength. The CMC layers adsorbed onto regenerated cellulose surfaces from CaCl(2) solutions exhibited greater stability upon exposure to flowing water than layers adsorbed from NaCl solutions. Both QCM-D and SPR results showed that CMC adsorption onto regenerated cellulose surfaces from CaCl(2) solutions increased with increasing CaCl(2) concentration up to the solubility limit (10 mM). Voigt-based viscoelastic modeling of the QCM-D data indicated that the CMC layers adsorbed onto regenerated cellulose surfaces had shear viscosities of η(f) ≈ 10(-3) N·s·m(-2) and elastic shear moduli of μ(f) ≈ 10(5) N·m(-2). Furthermore, the combination of SPR spectroscopy and QCM-D showed that the CMC layers contained 90-95% water. Adsorption isotherms for CMCs in CaCl(2) solutions were also obtained from QCM-D and were fit by Freundlich isotherms. This study demonstrated that CMC adsorption from CaCl(2) solutions is useful for the modification of cellulose surfaces.  相似文献   

20.
聚氨酯接枝多壁碳纳米管的制备及表征   总被引:3,自引:0,他引:3  
采用两步法成功地将聚氨酯分子链以共价键连接到碳纳米管表面. 首先将聚丙烯酰氯通过与强酸氧化后多壁碳纳米管表面产生的羟基及少量羧基之间的化学反应共价接枝到碳纳米管表面; 然后将接枝到碳纳米管表面的聚丙烯酰氯与端羟基聚氨酯发生酯化反应, 实现了聚氨酯对碳纳米管的表面共价接枝. 采用傅里叶变换红外光谱(FTIR)、透射电镜(TEM)、扫描电镜(SEM) 和热重分析(TGA)等对接枝后的产物进行了表征, 结果表明, 聚氨酯已共价接枝到碳纳米管表面, 被接枝的聚合物的含量接近90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号