首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The reaction of [Fe(III)L(CN)(3)](-) (L being bpca = bis(2-pyridylcarbonyl)amidate, pcq = 8-(pyridine-2-carboxamido)quinoline) or [Fe(III)(bpb)(CN)(2)](-) (bpb = 1,2-bis(pyridine-2-carboxamido)benzenate) ferric complexes with Mn(III) salen type complexes afforded seven new bimetallic cyanido-bridged Mn(III)-Fe(III) systems: [Fe(pcq)(CN)(3)Mn(saltmen)(CH(3)OH)]·CH(3)OH (1), [Fe(bpca)(CN)(3)Mn(3-MeO-salen)(OH(2))]·CH(3)OH·H(2)O (2), [Fe(bpca)(CN)(3)Mn(salpen)] (3), [Fe(bpca)(CN)(3)Mn(saltmen)] (4), [Fe(bpca)(CN)(3)Mn(5-Me-saltmen)]·2CHCl(3) (5), [Fe(pcq)(CN)(3)Mn(5-Me-saltmen)]·2CH(3)OH·0.75H(2)O (6), and [Fe(bpb)(CN)(2)Mn(saltmen)]·2CH(3)OH (7) (with saltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminato) dianion, salpen(2-) = N,N'-propylenebis(salicylideneiminato) dianion, salen(2-) = N,N'-ethylenebis(salicylideneiminato) dianion). Single crystal X-ray diffraction studies were carried out for all these compounds indicating that compounds 1 and 2 are discrete dinuclear [Fe(III)-CN-Mn(III)] complexes while systems 3-7 are heterometallic chains with {-NC-Fe(III)-CN-Mn(III)} repeating units. These chains are connected through π-π and short contact interactions to form extended supramolecular networks. Investigation of the magnetic properties revealed the occurrence of antiferromagnetic Mn(III)···Fe(III) interactions in 1-4 while ferromagnetic Mn(III)···Fe(III) interactions were detected in 5-7. The nature of these Mn(III)···Fe(III) magnetic interactions mediated by a CN bridge appeared to be dependent on the Schiff base substituent. The packing is also strongly affected by the nature of the substituent and the presence of solvent molecules, resulting in additional antiferromagnetic interdinuclear/interchain interactions. Thus the crystal packing and the supramolecular interactions induce different magnetic properties for these systems. The dinuclear complexes 1 and 2, which possess a paramagnetic S(T) = 3/2 ground state, interact antiferromagnetically in their crystal packing. At high temperature, the complexes 3-7 exhibit a one-dimensional magnetic behavior, but at low temperature their magnetic properties are modulated by the supramolecular arrangement: a three-dimensional antiferromagnetic order with a metamagnetic behavior is observed for 3, 4, and 7, and Single-Chain Magnet properties are detected for 5 and 6.  相似文献   

2.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

3.
Three hexadentate, asymmetric pendent arm macrocycles containing a 1,4,7-triazacyclononane-1,4-diacetate backbone and a third, N-bound phenolate or thiophenolate arm have been synthesized. In [L(1)](3)(-) the third arm is 3,5-di-tert-butyl-2-hydroxybenzyl, in [L(2)](3)(-) it is 2-mercaptobenzyl, and in [L(3)](3)(-) it is 3,5-di-tert-butyl-2-mercaptobenzyl. With trivalent metal ions these ligands form very stable neutral mononuclear complexes [M(III)L(1)] (M = Ga, Fe, Co), [M(III)L(2)] (M = Ga, Fe, Co), and [M(III)L(3)] (M = Ga, Co) where the gallium and cobalt complexes possess an S = 0 and the iron complexes an S = (5)/(2) ground state. Complexes [CoL(1)].CH(3)OH.1.5H(2)O, [CoL(3)].1.17H(2)O, [FeL(1)].H(2)O, and [FeL(2)] have been characterized by X-ray crystallography. Cyclic voltammetry shows that all three [M(III)L(1)] complexes undergo a reversible, ligand-based, one-electron oxidation generating the monocations [M(III)L(1)(*)](+) which contain a coordinated phenoxyl radical as was unambiguously established by their electronic absorption, EPR, and M?ssbauer spectra. In contrast, [M(III)L(2)] complexes in CH(3)CN solution undergo an irreversible one-electron oxidation where the putative thiyl radical monocationic intermediates dimerize with S-S bond formation yielding dinuclear disulfide species [M(III)L(2)-L(2)M(III)](2+). [GaL(3)] behaves similarly despite the steric bulk of two tertiary butyl groups at the 3,5-positions of the thiophenolate, but [Co(III)L(3)] in CH(2)Cl(2) at -20 to -61 degrees C displays a reversible one-electron oxidation yielding a relatively stable monocation [Co(III)L(3)(*)](+). Its electronic spectrum displays intense transitions in the visible at 509 nm (epsilon = 2.6 x 10(3) M(-)(1) cm(-)(1)) and 670sh, 784 (1.03 x 10(3)) typical of a phenylthiyl radical. The EPR spectrum of this species at 90 K proves the thiyl radical to be coordinated to a diamagnetic cobalt(III) ion (g(iso) = 2.0226; A(iso)((59)Co) = 10.7 G).  相似文献   

4.
Three Mn(III)-M(III) (M = Cr and Fe) dinuclear complexes have been obtained by assembling [Mn(III)(SB)(H(2)O)](+) and [M(III)(AA)(CN)(4)](-) ions, where SB is the dianion of the Schiff-base resulting from the condensation of 3-methoxysalicylaldehyde with ethylenediamine (3-MeOsalen(2-)) or 1,2-cyclohexanediamine (3-MeOsalcyen(2-)): [Mn(3-MeOsalen)(H(2)O)(μ-NC)Cr(bipy)(CN)(3)]·2H(2)O (1), [Mn(3-MeOsalen)(H(2)O)(μ-NC)Cr(ampy)(CN)(3)][Mn(3-MeOsalen)(H(2)O)(2)]ClO(4)·2H(2)O (2) and [Mn(3-MeOsalcyen)(H(2)O)(μ-NC)Fe(bpym)(CN)(3)]·3H(2)O (3) (bipy = 2,2'-bipyridine, ampy = 2-aminomethylpyridine and bpym = 2,2'-bipyrimidine). The [M(AA)(CN)(4)](-) unit in 1-3 acts as a monodentate ligand towards the manganese(III) ion through one of its four cyanide groups. The manganese(III) ion in 1-3 exhibits an elongated octahedral stereochemistry with the tetradentate SB building the equatorial plane and a water molecule and a cyanide-nitrogen atom filling the axial positions. Remarkably, the neutral mononuclear complex [Mn(3-MeOsalen)(H(2)O)(2)]ClO(4) co-crystallizes with the heterobimetallic unit in 2. The values of the Mn(III)-M(III) distance across the bridging cyanide are 5.228 (1), 5.505 (2) and 5.265 ? (3). The packing of the neutral heterobimetallic units in the crystal is governed by the self-complementarity of the [Mn(SB)(H(2)O)](+) moieties, which interact each other through hydrogen bonds established between the aqua ligand from one fragment with the set of phenolate- and methoxy-oxygens from the adjacent one. The magnetic properties of the three complexes have been investigated in the temperature range 1.9-300 K. Weak antiferromagnetic interactions between the Mn(III) and M(III) ions across the cyanido bridge were found: J(MnM) = -5.6 (1), -0.63 (2) and -2.4 cm(-1) (3) the Hamiltonian being defined as H = -JS(Mn)·S(M). Theoretical calculations based on density functional theory (DFT) have been used to substantiate both the nature and magnitude of the exchange interactions observed and also to analyze the dependence of the magnetic coupling on the structural parameters within the Mn(III)-N-C-M(III) motif in 1-3.  相似文献   

5.
The Fe(III) and Co(III) complexes of the ligand N-(2-picolyl)picolinamide (pmpH; H represents the dissociable amide hydrogen), namely, [Fe(pmp)(2)]BF(4) (1) and [Co(pmp)(2)]ClO(4) (2), have been synthesized and structurally characterized. The [bond]CH(2)[bond] moiety of pmp(-) in [M(pmp)(2)](+) (M = Fe, Co) is very reactive and is readily converted to carbonyl (C[double bond]O) group upon exposure to dioxygen. Such conversion results in [M(bpca)(2)]ClO(4) complexes (M = Fe (3), Co (5); bpcaH = bis(2-pyridylcarbonyl)amine) which have been characterized by spectroscopy and X-ray diffraction. The structure of 5 is reported here for the first time. The reactivity of the [bond]CH(2)[bond] moiety of pmp(-) has so far precluded the isolation of 1 although other metal complexes of pmp(-) have been reported years ago. The CH(2) --> C[double bond]O transformation arises from the tendency of the coordinated pmp(-) ligand to achieve further conjugation in the ligand framework and provides a better way to synthesize the metal complexes of bpcaH ligand. Reaction of 3 with NaH affords Fe(II) complex [Fe(bpca)(2)] (4) without any reduction of the ligand frame.  相似文献   

6.
Xu GF  Gamez P  Tang J  Clérac R  Guo YN  Guo Y 《Inorganic chemistry》2012,51(10):5693-5698
[Dy(III)(HBpz(3))(2)](2+) moieties (HBpz(3)(-) = hydrotris(pyrazolyl)borate) and a 3d transition-metal ion (Fe(III) or Co(III)) have been rationally assembled using an dithiooxalato dianion ligand into 3d-4f [MDy(3)(HBpz(3))(6)(dto)(3)]·4CH(3)CN·2CH(2)Cl(2) (M = Fe (1), Co (2) complexes. Single-crystal X-ray studies reveal that three eight-coordinated Dy(III) centers in a square antiprismatic coordination environment are connecting to a central octahedral trivalent Fe or Co ion forming a propeller-type complex. The dynamics of the magnetization in the two isostructural compounds, modulated by the nature of the central M(III) metal ion, are remarkably different despite their analogous direct current (dc) magnetic properties. The slow relaxation of the magnetization observed for 2 mainly originates from isolated Dy ions, since a diamagnetic Co(III) metal ion links the magnetic Dy(III) ions. In the case of 1, the magnetic interaction between S = 1/2 Fe(III) ion and the three Dy(III) magnetic centers, although weak, generates a complex energy spectrum of magnetic states with low-lying excited states that induce a smaller energy gap than for 2 and thus a faster relaxation of the magnetization.  相似文献   

7.
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) dinuclear cations, [Cr(III)L(ox)(μ-ox)M(II)L'(H(2)O)(2)](+)[M = Co, L = bpy, and L' = Me(2)phen (1); M = Mn and L = L' = phen (2)]. These oxalato-bridged Cr(III)M(II) dinuclear cationic entities of 1 and 2 result from the coordination of a [Cr(III)L(ox)(2)](-) unit through one of its two oxalato groups toward a [M(II)L'(H(2)O)(2)](2+) moiety with either a trans- (M = Co) or a cis-diaqua (M = Mn) configuration. The two distinct Cr(III) ions in 1 and 2 adopt a similar trigonally compressed octahedral geometry, while the high-spin M(II) ions exhibit an axially (M = Co) or trigonally compressed (M = Mn) octahedral geometry in 1 and 2, respectively. Variable temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 and 2 reveal the presence of weak intramolecular ferromagnetic interactions between the Cr(III) (S(Cr) = 3/2) ion and the high-spin Co(II) (S(Co) = 3/2) or Mn(II) (S(Mn) = 5/2) ions across the oxalato bridge within the Cr(III)M(II) dinuclear cationic entities (M = Co and Mn) [J = +2.2 (1) and +1.2 cm(-1) (2); H = -JS(Cr)·S(M)]. Density functional electronic structure calculations for 1 and 2 support the occurrence of S = 3 Cr(III)Co(II) and S = 4 Cr(III)Mn(II) ground spin states, respectively. A simple molecular orbital analysis of the electron exchange mechanism suggests a subtle competition between individual ferro- and antiferromagnetic contributions through the σ- and/or π-type pathways of the oxalato bridge, mainly involving the d(yz)(Cr)/d(xy)(M), d(xz)(Cr)/d(xy)(M), d(x(2)-y(2))(Cr)/d(xy)(M), d(yz)(Cr)/d(xz)(M), and d(xz)(Cr)/d(yz)(M) pairs of orthogonal magnetic orbitals and the d(x(2)-y(2))(Cr)/d(x(2)-y(2))(M), d(xz)(Cr)/d(xz)(M), and d(yz)(Cr)/d(yz)(M) pairs of nonorthogonal magnetic orbitals, which would be ultimately responsible for the relative magnitude of the overall ferromagnetic coupling in 1 and 2.  相似文献   

8.
The coordination chemistry of the ligands 2-anilino-4,6-di-tert-butylphenol, H[L(AP)], and N,N"'-bis[2-(4,6-di-tert-butylphenol]diethylenetriamine, H(2)[(L(AP))N(L(AP))], has been studied with the first-row transition metal ions V, Cr, Fe, and Co. The ligands are noninnocent in the sense that the aminophenolato parts, [L(AP)](-) and [L(AP)-H](2)(-), can be readily oxidized to their o-iminobenzosemiquinonato, [L(ISQ)](-), and o-iminobenzoquinone, [L(ISB)], forms. The following neutral octahedral complexes have been isolated as crystalline materials, and their crystal structures have been determined by X-ray crystallography at 100 K: [Cr(III)(L(ISQ))(3)] (1), [Fe(III)(L(ISQ))(3)] (2), [Co(III)(L(ISQ))(3)] (3), [V(V)(L(ISQ))(L(AP)-H)(2)] (4), [V(V)(L(AP)-H)(2)(L(AP))] (5), and [V(V)O[(L(AP))N(L(AP)-H)]] (6). From variable-temperature magnetic susceptibility measurements and X-band EPR spectroscopy it has been established that they possess the ground states: 1, S = 0; 2, S = 1; 3, S = (3)/(2); 4, S = (1)/(2); 5, S = 0; 6, S = 0. The o-iminobenzosemiquinonato radicals (S(rad) = (1)/(2)) couple strongly intramolecularly antiferromagnetically to singly occupied orbitals of the t(2g) subshell at the respective metal ion but ferromagnetically to each other in 3 containing a Co(III) ion with a filled t(2g)(6) subshell. It is demonstrated that the oxidation level of the ligands and metal ions can be unequivocally determined by high-quality X-ray crystallography in conjunction with EPR, UV-vis, and M?ssbauer spectroscopies. The spectro- and electrochemistry of these complexes have also been studied in detail. Metal- and ligand-based redox chemistry has been observed. The molecular and electronic structures are compared with those of their o-semiquinonato analogues.  相似文献   

9.
Two new dinucleating ligands 1,2,4,5-tetrakis(2-pyridinecarboxamido)benzene, H(4)(tpb), and 1,2,4,5-tetrakis(4-tert-butyl-2-pyridinecarboxamido)benzene, H(4)(tbpb), have been synthesized, and the following dinuclear cyano complexes of cobalt(III) and iron(III) have been isolated: Na(2)[Co(III)(2)(tpb)(CN)(4)] (1); [N(n-Bu)(4)](2)[Co(III)(2)(tbpb)(CN)(4)] (2); [Co(III)(2)(tbpb(ox2))(CN)(4)] (3); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(N(3))(4)] (4); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(CN)(4)] (5); [N(n-Bu)(4)](2)[Fe(III)(2)(tbpb)(CN)(4)] (6). Complexes 2-4 and 6 have been structurally characterized by X-ray crystallography at 100 K. From electrochemical and spectroscopic (UV-vis, IR, EPR, M?ssbauer) and magnetochemical investigations it is established that the coordinated central 1,2,4,5-tetraamidobenzene entity in the cyano complexes can be oxidized in two successive one-electron steps yielding paramagnetic (tbpb(ox1))(3)(-) and diamagnetic (tbpb(ox2))(2)(-) anions. Thus, complex 6 exists in five characterized oxidation levels: [Fe(III)(2)(tbpb(ox2))(CN)(4)](0) (S = 0); [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Fe(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Fe(III)Fe(II)(tbpb)(CN)(4)](3)(-) (S = (1)/(2)); [Fe(II)(2)(tbpb)(CN)(4)](4)(-) (S = 0). The iron(II) and (III) ions are always low-spin configurated. The electronic structure of the paramagnetic iron(III) ions and the exchange interaction of the three-spin system [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) are characterized in detail. Similarly, for 2 three oxidation levels have been identified and fully characterized: [Co(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Co(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Co(III)(2)(tbpb(ox2))(CN)(4)](0). The crystal structures of 2 and 3 clearly show that the two electron oxidation of 2 yielding 3 affects only the central tetraamidobenzene part of the ligand.  相似文献   

10.
Zhou HB  Wang J  Wang HS  Xu YL  Song XJ  Song Y  You XZ 《Inorganic chemistry》2011,50(15):6868-6877
On the basis of high-spin metal-cyanide clusters of Mn(III)(6)M(III) (M = Cr, Fe, Co), three one-dimensional (1D) chain complexes, [Mn(salen)](6)[Cr(CN)(6)](2)·6CH(3)OH·H(2)O (1), [Mn(5-CH(3))salen)](6)[Fe(CN)(6)](2)·2CH(3)CN·10H(2)O (2), and [Mn(5-CH(3))salen)](6)[Co(CN)(6)](2)·2CH(3)CN·10H(2)O (3) [salen = N,N'-ethylenebis(salicylideneiminato) dianion], have been synthesized and characterized structurally as well as magnetically. Complexes 2 and 3 are isomorphic but slightly different from complex 1. All three complexes contain a 1D chain structure which is comprised of alternating high-spin metal-cyanide clusters of [Mn(6)M](3+) and a bridging group [M(CN)(6)](3-) in the trans mode. Furthermore, the three complexes all exhibit extended 3D supramolecular networks originating from short intermolecular contacts. Magnetic investigation indicates that the coupling mechanisms are intrachain antiferromagnetic interactions for 1 and ferromagnetic interactions for 2, respectively. Complex 3 is a magnetic dilute system due to the diamagnetic nature of Co(III). Further magnetic investigations show that complexes 1 and 2 are dominated by the 3D antiferromagnetic ordering with T(N) = 7.2 K for 1 and 9.5 K for 2. It is worth noting that the weak frequency-dependent phenomenon of AC susceptibilities was observed in the low-temperature region in both 1 and 2, suggesting the presence of slow magnetic relaxations.  相似文献   

11.
Investigations on a series of eight novel mononuclear iron(III) Schiff base complexes with the general formula [Fe(L(5))(L(1))]·S (where H(2)L(5) = pentadentate Schiff-base ligand, L(1) = a pseudohalido ligand, and S is a solvent molecule) are reported. Several different aromatic 2-hydroxyaldehyde derivatives were used in combination with a non-symmetrical triamine 1,6-diamino-4-azahexane to synthesize the H(2)L(5) Schiff base ligands. The consecutive reaction with iron(III) chloride resulted in the preparation of the [Fe(L(5))Cl] precursor complexes which were left to react with a wide range of the L(1) pseudohalido ligands. The low-spin compounds were prepared using the cyanido ligand: [Fe(3m-salpet)(CN)]·CH(3)OH (1a), [Fe(3e-salpet)(CN)]·H(2)O (1b), while the high-spin compounds were obtained by the reaction of the pseudohalido (other than cyanido) ligands with the [Fe(L(5))Cl] complex arising from salicylaldehyde derivatives: [Fe(3Bu5Me-salpet)(NCS)] (2a), [Fe(3m-salpet)(NCO)]·CH(3)OH (2b) and [Fe(3m-salpet)(N(3))] (2c). The compounds exhibiting spin-crossover phenomena were prepared only when L(5) arose from 2-hydroxy-1-naphthaldehyde (H(2)L(5) = H(2)napet): [Fe(napet)(NCS)]·CH(3)CN (3a, T(1/2) = 151 K), [Fe(napet)(NCSe)]·CH(3)CN (3b, T(1/2) = 170 K), [Fe(napet)(NCO)] (3c, T(1/2) = 155 K) and [Fe(napet)(N(3))], which, moreover, exhibits thermal hysteresis (3d, T(1/2)↑ = 122 K, T(1/2)↓ = 117 K). These compounds are the first examples of octahedral iron(III) spin-crossover compounds with the coordinated pseudohalides. We report the structure and magnetic properties of these complexes. The magnetic data of all the compounds were analysed using the spin Hamiltonian formalism including the ZFS term and in the case of spin-crossover, the Ising-like model was also applied.  相似文献   

12.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

13.
A series of metal complexes were synthesized from equimolar amounts of Schiff bases: 1,4-bis[3-(2-hydroxy-1-naphthaldimine)propyl]piperazine (bappnaf) and 1,8-bis[3-(2-hydroxy-1-naphthaldimine)-p-menthane (damnaf) with metal chlorides. All of synthesized compounds were characterized by elemental analyses, spectral (UV-vis, IR, (1)H-(13)C NMR, LC-MS) and thermal (TGA-DTA) methods, magnetic and conductance measurements. Schiff base complexes supposed in tetragonal geometry have the general formula [M(bappnaf or damnaf)]Cl.nH(2)O, where M=Cr(III), Co(III) and n=2, 3. But also Fe(III) complexes have octahedral geometry by the coordination of two water molecules and the formula is [Fe(bappnaf or damnaf)(H(2)O)(2)]Cl. The changes in the selected vibration bands in FT-IR indicate that Schiff bases behave as (ONNO) tetradentate ligands and coordinate to metal ions from two phenolic oxygen atoms and two azomethine nitrogen atoms. Conductance measurements suggest 1:1 electrolytic nature of the metal complexes. The synthesized compounds except bappnaf ligand have the antimicrobial activity against the bacteria: Escherichia coli (ATCC 11230), Yersinia enterocolitica (ATCC 1501), Bacillus magaterium (RSKK 5117), Bacillus subtilis (RSKK 244), Bacillus cereus (RSKK 863) and the fungi: Candida albicans (ATCC 10239). These results have been considerably interest in piperazine derivatives due to their significant applications in antimicrobial studies.  相似文献   

14.
Seven cyanide-bridged bimetallic complexes have been synthesized by the reaction of [Fe(1-CH3im)(CN)5]2- with Mn(III) Schiff base complexes. Their crystal structure and magnetic properties have been characterized. Five complexes, [Mn2(5-Brsalen)2Fe(CN)5(1-CH3im)] x H2O (1), [Mn2(5-Clsalen)2(H2O)2Fe(CN)5(1-CH3im)] x H2O (2), [Mn2(5-Clsaltn)2(H2O)2Fe(CN)5(1-CH3im)] (3), [Mn2(5-Clsaltmen)2(H2O)2Fe(CN)5(1-CH3im)] x H2O (4), and [Mn2(5-Brsaltmen)2(H2O)2Fe(CN)5(1-CH3im)] x CH3OH (5), are neutral and trinuclear with two [Mn(SB)]+ (SB2- = Schiff base ligands) and one [Fe(1-CH3im)(CN)5]2-. Complex {[Et4N][Mn(acacen)Fe(CN)5(1-CH3im)]}n x 6nH2O (6) is one-dimensional with alternate [Mn(acacen)]+ and [Fe(CN)5(1-CH3im)]2- units. The two-dimensional complex {[Mn4(saltmen)4Fe(CN)5(1-CH3im)]}n[ClO4]2n x 9nH2O (7) consists of Mn4Fe units which are further connected by the phenoxo oxygen atoms. Magnetic studies show the presence of ferromagnetic Mn(III)-Fe(III) coupling in the trinuclear compounds with the magnetic coupling constant (J) ranging from 4.5 to 6.0 cm-1, based on the Hamiltonian H = -2JSFe(SMn(1) + SMn(2)). Antiferromagnetic interaction has been observed in complex 6, whereas ferromagnetic coupling occurs in complex 7. Complexes 6 and 7 exhibit long-range magnetic ordering with a TN value of 4.0 K for 6 and Tc of 4.8 K for 7. Complex 6 shows metamagnetic behavior at 2 K, and complex 7 possesses a hysteresis loop with a coercive field of 500 Oe, typical of a soft ferromagnet.  相似文献   

15.
The structures, luminescent and magnetic properties of three series of coordination polymers with formulas-{[Fe(3)Ln(2)(L(1))(6)(H(2)O)(6)]·xH(2)O}(n) (Ln = Pr-Er; 1-9), {[Co(3)Ln(2)(L(1))(6)(H(2)O)(6)]·yH(2)O}(n) (Ln = Pr-Dy, Yb; 10-17) and {[Co(2)Ln(L(2))(HL(2))(2)(H(2)O)(7)]·zH(2)O}(n) (Ln = Eu-Yb; 18-25) (H(2)L(1) = pyridine-2,6-dicarboxylic acid, H(3)L(2) = 4-hydroxyl-pyridine-2,6-dicarboxylic acid) were systematically explored in this contribution. [Fe(II)(HS)-L(1)-Ln(III)] (1-9) and [Co(II)-L(1)-Ln(III)] (10-17) series are isostructural, and display 3D porous networks with 1D nanosized channels constructed by Fe/Co-OCO-Ln linkages. Furthermore, two types of "water" pipes are observed in 1D channels. [Co(II)-L(2)-Ln(III)] (18-25) series exhibit 2D open frameworks based on double-stranded helical motifs, which are further assembled into 3D porous structures by intermolecular hydrogen bonds between hydroxyl groups. The variety of the resulting structures is mainly due to the HO-substitution effect. These 3D coordination polymers show considerably high thermal stability, and do not decomposed until 400 °C. The high-spin Fe(II) ion in [Fe(II)(HS)-L(1)-Ln(III)] was confirmed by X-ray photoelectron spectroscopy, M?ssbauer spectroscopy and magnetic studies. The luminescent spectra of coordination polymers associated with Sm(III), Eu(III), Tb(III) and Dy(III) were systematically investigated, and indicate that different d-metal ions in d-f systems may result in dissimilar luminescent properties. The magnetic properties of [Fe(II)(HS)-L(1)-Ln(III)] (3, 6, 7, 9, 13), [Co(II)-L(1)-Ln(III)] (15-17) and [Co(II)-L(2)-Ln(III)] (19-24) coordination polymers were also studied, and the χ(M)T values decrease with cooling. For the single ion behavior of Co(II) and Ln(III) ions, the magnetic coupling nature between Fe(II)(HS)/Co(II) and Ln(III) ions cannot be clearly depicted as antiferromagnetic coupling.  相似文献   

16.

Two new azido-bridged Fe(III) Schiff base complexes, [Fe(salen)N 3 ] and [Fe(MeO-salen)N 3 ]·2H 2 O, [salen = N , N '-bis-salicylaldehyde(ethylenediimine) and MeO-salen = N , N' -bis-3-methoxysalicylaldehyde(ethylenediimine)] have been synthesized, characterized and studied cryo-magnetically. A new isomeric form of the complex [{Fe(salen) 2 O}] was obtained when attempts were made to grow single crystal of [Fe(salen)N 3 ] from different solvents. The structure of [Fe(salen)] 2 O has been determined by single crystal X-ray analysis. Magnetic susceptibility measurements show the presence of antiferromagnetic interactions in [Fe(salen)N 3 ] and [Fe(MeO-salen)N 3 ]·2H 2 O. The theoretical fit of the susceptibility data yielded values for the spin exchange parameters J = m 10 ( - 0.2) and m 13 ( - 0.3) cm m 1 , for [Fe(salen)N 3 ] and [Fe(MeO-salen)N 3 ]·2H 2 O, respectively.  相似文献   

17.
合成了3个新的氢醌金属配合物:[Co(H2cah)(H2O)2].H2O(1),Ni(H2cah)(H2O)2].H2O(2),[Zn(H2cah)(CH3OH)(H2O)].H2O(3)(H4cah=2-(N,N-二羧甲酸氨甲基)氢醌),通过X-射线单晶衍射,红外光谱,元素分析对它们进行了表征。这些配合物均为单核结构,并且通过分子间的氢键形成了无限的超分子网状结构。电化学研究显示配合物1中的Co2+/Co+对和配合物2中的Ni2+/Ni+对的氧化还原是一个不可逆的过程,但是氢醌到半醌之间的转换是一个准可逆的过程。  相似文献   

18.
Zhang X  Luo W  Zhang YP  Jiang JB  Zhu QY  Dai J 《Inorganic chemistry》2011,50(15):6972-6978
A series of supertetrahedral polymers of chalcogenometalates (T3 cluster compounds) integrated with M-phen complexes (phen =1,10-phenanthroline; M = Ni, Fe) was prepared by a similar solvothermal technique. Compound [Fe(phen)(3)](4)[H(4)In(20)S(38)]·Hphen·3HDMA·8H(2)O (Mp-InS-4) (DMA = dimethylamine) is a 1-D straight chain. Compounds [M(phen)(3)](4)[In(20)S(37)]·6Hphen·4H(2)O (M = Ni, Mp-InS-5; Fe, Mp-InS-6) are the first reported 2-D Tn polymers integrated with complex cations of [M(phen)(3)](2+). Compound [Ni(phen)(3)](4)[H(4)In(20)S(38)]·2Hphen·2HDMA·3H(2)O (Mp-InS-7) shows a zigzag 1-D structure. We find that the reaction time is an important factor in assembling of the T3 clusters. Prolonging the reaction time seems favorable to the higher condensed phases (from 0-D to 2-D). However, a longer reaction time resulted in the crack of 2-D structure. Integrating M-phen complex cations with the chalcogenido anions can improve absorption of the materials in the visible range due to the charge transfers within the cations or between cations and anions.  相似文献   

19.
翟君  徐立 《结构化学》2012,31(2):255-261
The title complex [Fe(CDTA)(H2O)]·[Fe(1,10-phen)3]·10H2O·2OH (CDTA = transcyclohexane-1,2-diamine-N,N,N,N′-tetraacetate) has been prepared and characterized by single-crystal X-ray diffraction analysis. The crystal adopts space group P with a = 12.793(4), b = 14.104(5), c = 17.880(5), V = 2792.2(1)3, Dc = 1.459 g/cm3, C50H66Fe2N8O21, Mr = 1226.81, F(000) = 1284, μ = 0.604 mm-1, Z = 2, R = 0.1055 and wR = 0.2581 for 8675 observed reflections (I > 2σ(I)). X-ray crystallography analysis exhibits that the title compound consists of two crystallographically independent molecules [Fe(CDTA)(H2O)] and [Fe(1,10-phen)3], and they are connected through O-H···O hydrogen bonds and π···π stacking interactions forming a 3D supramolecular structure. Interestingly, there is a cyclic water hexamer with chair conformation in this complex.  相似文献   

20.
Three bis-tetradentate acyclic amine ligands differing only in the arm length of the pyridine pendant arms attached to the 4,6-positions of the pyrimidine ring, namely, 4,6-bis[N,N-bis(2'-pyridylethyl)aminomethyl]-2-phenylpyrimidine (L(Et)), 4,6-bis[N,N-bis(2'-pyridylmethyl)aminomethyl]-2-phenylpyrimidine (L(Me)), and 4,6-[(2'-pyridylmethyl)-2'-pyridylethyl)aminomethyl]-2-phenylpyrimidine (L(Mix)) have been used to synthesize nine air-sensitive diiron(II) complexes: [Fe(II)(2)L(Et)(NCS)(4)]·MeOH·(3)/(4)H(2)O (1·MeOH·(3)/(4)H(2)O), [Fe(II)(2)L(Et)(NCSe)(4)]·H(2)O (2·H(2)O), [Fe(II)(2)L(Et)(NCBH(3))(4)]·(5)/(2)H(2)O (3·(5)/(2)H(2)O), [Fe(II)(2)L(Me)(NCS)(4)]·(1)/(2)H(2)O (4·(1)/(2)H(2)O), [Fe(II)(2)L(Me)(NCSe)(4)] (5), [Fe(II)(2)L(Me)(NCBH(3))(4)]·(3)/(2)H(2)O (6·(3)/(2)H(2)O), [Fe(II)(2)L(Mix)(NCS)(4)]·(1)/(2)H(2)O (7·(1)/(2)H(2)O), [Fe(II)(2)L(Mix)(NCSe)(4)]·(3)/(2)H(2)O (8·(3)/(2)H(2)O), and [Fe(II)(2)L(Mix)(NCBH(3))(4)]·(3)/(2)H(2)O (9·(3)/(2)H(2)O). Complexes 3·(5)/(2)H(2)O, 4·(1)/(2)H(2)O, 5, 6·(3)/(2)H(2)O, and 8·(3)/(2)H(2)O were structurally characterized by X-ray crystallography, revealing, in all cases, both of the iron(II) centers in an octahedral environment with two NCE (E = S, Se, or BH(3)) anions in a cis-position relative to one another. Variable temperature magnetic susceptibility measurements showed that all nine diiron(II) complexes are stabilized in the [HS-HS] state from 300 K to 4 K, and exhibit weak antiferromagnetic coupling. M?ssbauer spectroscopy confirmed the spin and oxidation states of eight of the nine complexes (the synthesis of air-sensitive complex 3 was not readily reproduced).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号