首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Quenching of the triplet excited state of molecular tryptophan by nitroxide radical in 1,4-dioxane and water solutions was investigated by means of time-resolved electron paramagnetic resonance (EPR) and Fourier-transform (FT)-EPR. The chemically induced dynamic electron polarization (CIDEP) signals with net emissive phase were recorded at these quenching events and were analyzed through radical-triplet pair mechanism. The CIDEP time profiles were well reproduced by Bloch and kinetic equations, assuming radical-triplet pair mechanism with the appropriate quenching rate constants. From a comparison of the simulation and the experiment, CIDEP enhancement factor in 1,4-dioxane was determined to be −30 × P eq, where P eq is the spin polarization of nitroxide at thermal equilibrium. Net emissive CIDEP was also observed by FT-EPR measurements on the nitroxide quenching of the triplet excited state of tryptophan residue in α-lactalbumin. Magnitude of CIDEP created in α-lactalbumin/nitroxide system depends on the pH condition of α-lactalbumin solution, which is related to protein folding dynamics. We argue the CIDEP mechanism at the α-lactalbumin surface and propose a possibility of a novel CIDEP method to probe a protein surface and structural changes.  相似文献   

2.
A Fourier transform EPR (FT-EPR) study was made of the photochemistry of [Re(R)(CO)3 (α-diimine)] and [Ru(E)(R)(CO)2(α-diimine)] complexes, where R = alkyl or benzyl, E = I or SnPh3, and α-diimine = 4,4′-dimethyl-2,2′-bipyridine (DMB) orN,N′-diisopropyl-1,4-diazabutadiene (iPr-DAB). Photoexcitation of these complexes leads to homolysis of the metal-alkyl (benzyl) bonds as evident from the detection of the spectra of the alkyl (benzyl) radicals. FT-EPR spectra display strong spin polarization effects attributed to Triplet Mechanism (TM) and Radical Pair Mechanism (RPM) Chemically Induced Dynamic Electron Polarization (CIDEP). CIDEP patterns point to bond dissociation via a triplet state precursor. For a number of complexes, spin polarization was found to exhibit unusually large solvent effects, whereas for one complex the CIDEP pattern proved to be sensitive to the wavelength of laser light used to initiate bond dissociation. These effects reflect the strong dependence of CIDEP on the character of the excited states involved in the photochemical reactions and contribute to the understanding of the reaction mechanism.  相似文献   

3.
CIDEP signals of semireduced thionine radicals produced by reacting thionine triplets with aniline and halogenated anilines were measured by time resolved CW and pulsed FT EPR. For aniline as quencher, the polarization was emissive while for 4-Br- and 3-I-aniline a time dependent change in polarization from emissive to enhanced absorption was observed. For 4-I-aniline the signals were in enhanced absorption for all delay times. The time and concentration dependence of the signals was analysed in terms of a sequential double triplet mechanism: polarization of the thionine triplet due to selective population of the molecular triplet substates (classical ‘p-type’ triplet mechanism) and modification of this polarization by substate selective, heavy atom induced depopulation of triplet exciplexes (triplet contact radical pairs) formed as intermediates in the triplet quenching by electron transfer (‘d-type’ triplet mechanism). A quantitative theoretical treatment that combines the time-integrated solution of the stochastic Liouville equations for precursor triplet and triplet exciplex with the kinetic rate equation of the bimolecular quenching process is presented. The equations derived allow the extraction of two polarization enhancement factors, V d for the pure d-type and V pd for the combined p- and d-type triplet mechanism from the concentration dependence of the time dependent CIDEP signals. The CIDEP curves and the previously observed magnetic field and heavy atom effects on the free radical yield can be quantitatively simulated with a consistent set of kinetic parameters.  相似文献   

4.
From time-resolved direct detection cw EPR with pulsed laser excitation, the photoinduced electron transfer and spin dynamics (CIDEP) in mixed zinc-tetraphenylporphyrin (ZnTPP)/benzo-1,4-quinone (BQ) ethanol solutions were determined as functions of temperature and BQ concentration. At lower temperatures the EPR spectra reveal that mixing of the S and T?1 states in the charge separated radical pair gains in importance relative to the ST0 mixing. Furthermore, at lower temperatures, the EPR spectra of the spin-correlated radical pairs of ZnTPP+ and BQ7 could also be observed. From the temperature/viscosity dependence of the electron transfer rates and of the polarization contributions from the triplet and radical pair mechanisms, deviations from a macroscopic diffusion behaviour are inferred at lower temperatures.  相似文献   

5.
A highly time-resolved high-frequency/high-field W-band electron paramagnetic resonance (EPR) (ν ~ 94 GHz) is a powerful technique to determine small g anisotropies of transient paramagnetic species. We applied this method to studies of the lowest excited triplet (T1)3 ππ* states in metal complexes such as a platinum (Pt) diimine complex and metal (Zn and Mg) porphines in rigid glasses. From the analyses of time-resolved EPR spectra, g anisotropies were obtained as g z  = 2.0048, g x  = g y  = 2.0035 for Pt(b-iq)(CN)2 (b-iq = 3,3′bi-isoquinoline) and g z  = 1.9968, g x  = g y  = 2.0022 for zinc tetraphenylporphine (ZnTPP). No measurable anisotropies were found for magnesium (Mg) TPP. The g values of the Pt complex are larger than g e (=2.0023, g value of free electron) and that g z of ZnTPP is smaller than g e. These results were interpreted in terms of the nature of the perturbed states: the higher triplet ππ′* state mixes with T1(ππ*) via spin–orbit coupling in ZnTPP. In contrast, the higher triplet dπ* state is involved in this coupling for the Pt complex. Thus, the nature of the perturbed state can be distinguished from the anisotropic g values of the T1(ππ*) state.  相似文献   

6.
A. I. SHUSHIN 《Molecular physics》2013,111(9):1303-1310
The specific features of the mechanisms and kinetics of generation of net chemically induced dynamic electron polarization (CIDEP) in triplet radical quenching (TRQ) in liquids is analysed in detail. The problem reduces to the analysis of fairly strong non-adiabatic transitions between states of the triplet radical spin Hamiltonian which are known to determine CIDEP generation in TRQ. The analysis is performed in two limits of fast and slow rotation of the triplet molecule using the previously developed method of treatment for non-adiabatic transitions. The method made it possible to derive analytical formulas for the CIDEP generation probability P e and rate K e, and for the TRQ probability P q and rate K q in the case of relatively strong quenching. It is shown that the dependence of K e on the relative diffusion coefficient D r is of bell shape and cannot be described correctly by the usually applied relation K e = K q P e.  相似文献   

7.
The radical-triplet pair mechanism for chemically induced dynamic electron polarization (CIDEP) created in the quenching of excited state molecules by free radicals is explained on the basis of recent time-resolved electron spin resonance spectroscopic results and theoretical studies. The CIDEP of 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) and galvinoxyl radicals exhibit various CIDEP patterns of net and mutliplet types and CIDEP phases of absorption and emission. The CIDEP patterns are described by the quartet-doublet state mixings within the radical-triplet encounter pairs. The mixings by the spin-dipolar and the hyperfine interactions are responsible for the net and the multiplet patterns, respectively. The factors controlling the CIDEP phases are the spin multiplicity of the excited state quenched by radicals and the sign of the intermolecular exchange interaction of the radical-triplet encounter pairs. In particular, the intermolecular charge transfer effect on the exchange interaction is discussed much in detail from the viewpoints of CIDEP magnitudes and phases. A CIDEP creation in the O2(1Δg)-TEMPO system is also introduced and is described by the radical-triplet pair mechanisms. Applications of this CIDEP used as a probe of O2(1Δg) in condensed phase are mentioned.  相似文献   

8.
Using the atomic beam magnetic resonance method the Zeeman interactions of12C in the3 P 1 and3 P 2 states at magnetic fields of about 3.4 kOe have been measured. The measured quantities areg J (3 P 1)?gJ(3 P 2)=15.4(1.0)·10?6 g J (3 P 2)=1.5010616 (50), from which the following value for gJ(3P1) can be calculated:g J (3 P 1)=1.5010770 (50). The experimental results are in moderate agreement with theoretical calculations.  相似文献   

9.
The electron paramagnetic resonance (EPR) signals of photoexcited quartet (Q1) states for zinc(II) tetra-tert-butyl-phthalocyanine (ZnPc) ligated by 3- and 4-(N-nitronyl-nitroxide) pyridine radicals (3-NOPy, 4-NOPy) were observed in toluene solution at room temperature by means of X-band (9.4 GHz) time-resolved EPR (TREPR) spectroscopy. Theg values of Q1 in the ZnPc-3-NOPy and ZnPc-4-NOPy complexes were found to beg=2.0025 andg=2.0036, respectively. The obtainedg value (2.0036) for ZnPc-4-NOPy is in good agreement with the value (g=2.0037) of the Q1 state calculated under the strong-exchange limit. Theg value (2.0025) is just an average of the Q1 and D1 (g=2.0013) states for ZnPc-3-NOPy. Theg value of Q1 for zinc(II) meso-tetraphenylporphine (ZnTPP) ligated by 3-NOPy showed a slight shift (g=2.0027) at X-band and no shift (g=2.0031) at W-band from the calculatedg value (g=2.0031) (J. Fujisawa, Y. Iwasaki, Y. Ohba, S. Yamauchi, K. Koga, S. Karasawa, M. Fuhs, K. Möbius, S. Weber, Appl. Magn. Reson. 21, 483–493, 2001). These changes in theg value were found to originate from an averaging of the TREPR spectra over the Q1 and photoexcited doublet (D1) states via a fast intersystem crossing (ISC) process. The ISC rates between these two states were estimated by means of numerical calculations with the modified Bloch equations as 1.2·108 and 6·107 s?1 for the ZnTPP-3-NOPy complex at the X- and W-bands, respectively. The lower limit of the ISC rate was obtained as 109s?1 for the ZnPc-3-NOPy complex and the higher limit was found to be 3.1·108 s?1 for the ZnPc-4-NOPy complex.  相似文献   

10.
The question whether excited triplet states of quinones react with a number of substrates such as alcohols, phenols, and amines, via electron transfer mechanism has attracted much attention in recent years. The existence of some triplet exciplex was postulated by Kobashi et al1 in their study of hydrogen atom abstraction by p-chloranil using laser flash spectrocopic detection. In some recent e.s.r. and CIDEP studies2,3, however, there is no compelling evidence that the photoreduction of quinones and benzophenones undergoes an initial electron transfer mechanism. It should be noted that most of the e.s.r. studies of quinone radical anions had been carried out in polar solvents. In flash photolysis studies some evidence has indeed been obtained1,4 in which the efficiency of hydrogen abstraction by excited triplet quinones increases with solvent polarity and therefore it is possible that the initial primary process involves electron transfer followed immediately by proton transfer. On the other hand, we  相似文献   

11.
The luminescent center of the fresnoite crystal has been studied by electron paramagnetic resonance with optical detection at temperatures between 0.5 and 10 K. The results prove that the strong blue-green luminescence originates from a spin triplet state that is centered on the Ti ion. The C4 symmetry of the Ti site is lost on excitation through a static Jahn-Teller effect, and eight sets of equivalent, strongly inhomogeneously broadened optically detected EPR signals appear. The signals are described by a spin hamiltonian withS=1, |D| ≈ 70 GHz, |E|=3.02 GHz, gzz=1.93, and gxx=gyy ≡ g3=2.0023. The lifetimes of the three sublevels aret x =3.4,t y=30,t z=23 ms; the dominant radiative decay is from τx and polarized perpendicular to thec axis.  相似文献   

12.
The spectra of ultrathin free samples of hexagonal CdSe in a magnetic field up to 8 T are studied at 1.7 K. The fan-shaped diagram contains information on weak (the Zeeman effect and diamagnetic shift), as well as strong fields (transitions between Landau levels). As a result of the application of two theoretical models for combined interpretation of strong-and weak-field experimental data, two sets of (band and polaron) parameters are calculated for hexagonal CdSe in the quasi-cubic approximation. The values of the obtained polaron/band parameters are: the electron effective mass m e =0.125/0.116m 0, the Luttinger parameters γ1=1.5/1.72, γ=0.29/0.37, κ=?0.63, and the effective electron g-factor g e =0.7.  相似文献   

13.
Chemically induced dynamic electron polarization (CIDEP) of galvinoxyl was measured in various excited molecule-galvinoxyl systems prepared by laser photolysis. Most of the systems examined showed net emission CIDEP, which is well explained by the quartet precursor radical-triplet pair mechanism with exchange interaction,J, of negative sign (quartet is higher than doublet). Several systems with molecules such as naphthalene, quinoxaline, biphenyl and triphenylene, however, showed net absorption CIDEP. Time profiles of CIDEP and kinetic analysis of quenching suggest that net absorption CIDEP is generated during the triplet quenching process by the galvinoxyl radical. We conclude that the net absorption CIDEP is produced during the triplet quenching if theJ value of radical-triplet encounter pair is positive. This is the first report of the radical-triplet encounter pairs with positiveJ value. The mechanism for this unusual positive sign ofJ value is discussed on the basis of the spin-selective configuration interaction between the doublet spin correlated states of radical-triplet and charge transfer encounter pairs.  相似文献   

14.
The energy of a large bipolaron is calculated for various spacings between the centers of the polarization potential wells of the two polarons with allowance made for electron correlations (i.e., the explicit dependence of the wave function of the system on the distance between the electrons) and for permutation symmetry of the two-electron wave function. The lowest singlet and triplet 23S states of the bipolaron are considered. The singlet polaron is shown to be stable over the range of ionic-bond parameter values η≤ηm≈0.143 (η=?/?0, where ? and ?0 are the high-frequency and static dielectric constants, respectively). There is a single energy minimum, corresponding to the single-center bipolaron configuration (similar to a helium atom). The binding energy of the bipolaron for η → 0 is Jbp=?0.136512e4m*/?2? 2 (e and m* are the charge and effective mass of a band electron), or 25.8% of the double polaron energy. The triplet bipolaron state (similar to an orthohelium atom) is energetically unfavorable in the system at hand. The single-center configuration of the triplet bipolaron corresponds to a sharp maximum in the distance dependence of the total energy Jbp(R); therefore, a transition of the bipolaron to the orthostate (e.g., due to exchange scattering) will lead to decay of the bound two-particle state. The exchange interaction between polarons is antiferromagnetic (AFM) in character. If the conditions for the Wigner crystallization of a polaron gas are met, the AFM exchange interaction between polarons can lead to AFM ordering in the system of polarons.  相似文献   

15.
The magnetic resonance spectrum of spin clusters formed in spin-Peierls magnets in the vicinity of impurity ions is investigated. The observed temperature dependences of the effective g-factor and the linewidth of the electron paramagnetic resonance (EPR) in crystals of Cu1?x NixGeO3 are described in the model of the exchange narrowing of the two-component spectrum with one component ascribed to spin clusters and exhibiting an anomalous value of the g-factor and the other related to triplet excitations. An estimation of the size of the suppressed dimerization region around the impurity ion is obtained (this region includes about 30 copper ions). The dependence of the effective g-factor and the EPR linewidth on the impurity concentration at low temperatures indicates the interaction of clusters.  相似文献   

16.
A high-field (D-band, 130 GHz) electron spin echo-detected spectrum of the primary electron donor triplet state,3P, in quinone-depleted photosynthetic reaction centers from the bacteriumRhodobacter sphaeroides R26 is obtained. It shows a significantg-anisotropy, which is larger than that of the primary donor oxidized state, P+?. Simulation gives the tripletg-tensor principal values of 2.0037, 2.0028, and 2.0022 (precision ±0.0001), assuming that theg-tensor is coaxial to a zerofield splitting tensor. The3P spectral lineshape reveals an orientational anisotropy of the triplet quantum yield. We explain this anisotropy as arising from the difference in the main values and relative orientations between theg-tensors of P+? and I A ?? in the primary radical pair (the triplet state’s precursor).  相似文献   

17.
The photocleavage of the CBr bond in bromoacetylnaphthalene is investigated by transient absorption and time resolved EPR spectroscopy. In the transient absorption of 2-bromo-2′-acetylnaphthalene, the absorption band observed at λmax ~440 nm is assigned to the triplet state of the parent molecule. After decay of the triplet absorption, a long lived absorption band is observed at λmax ~380 nm, which is assigned to naphthoylmethyl radical. The yield of this radical is not dependent on the concentration of oxygen even though the absorption band of the triplet state was quenched by addition of oxygen. Thus we conclude that the spin multiplicity of the precursor molecule is singlet. The CW time resolved EPR spectrum shows a typical E?/A CIDEP pattern of three hyperfine lines of the naphthoylmethyl radical. This result suggests some contribution from triplet precursor molecules. However, a careful analysis of the time profile of the CIDEP intensity observed by FT-EPR revealed that the polarization is generated from the radical pair mechanism (RPM) from the encountered pair of two free naphthoylmethyl radicals and the radical-triplet pair mechanism. RPM polarization by the geminate radical pair, formed by the Br atom and the naphthoylmethyl radical, is not observed. This fact indicates that large spin-orbit coupling (Δg and/or fast spin relaxation by g anisotropy) spoils the RPM polarization. The finding is in contrast to the recent observation of RPM polarization in the Cl cleavage reaction of 1-(chloromethyl)naphthalene.  相似文献   

18.
It is reported that similar cathodoluminescence spectra are excited by an electron beam striking BaTiO3, SrTiO3 and TiO2 ceramics at room temperature. The energy location of the luminescence bands does not depend on various doping or reduction treatments. The luminescence intensity increases with the electron beam current as well as with the conduction electron density. The luminescence is interpreted as a fundamental transition of local character in the TiO6 octahedron; the conduction electrons localized at the Ti sites in polaron states recombine with the 0–2p valence electron defects. The shape and energy location of the luminescence spectra are qualitatively in accordance with an explanation in terms of a configuration coordinate model.  相似文献   

19.
Chemically induced dynamic electron polarization (CIDEP) created in the quenching of triplet naphthalene by galvinoxyl were investigated by time-resolved Fourier-transform electron paramagnetic resonance (FT-EPR) measurements with monitoring a free induction decay signal of a pulsed microwave irradiation. Transient FT-EPR spectra of galvinoxyl with CIDEP were observed in various nonpolar solvents with different viscosity. A transient FT-EPR signal phase shows remarkable dependence on the viscosity: FT-EPR signal phases were absorption and emission in the solvents with low and high viscosity, respectively. Time evolutions of the FT-EPR signal of galvinoxyl were well simulated by a model of the radical-triplet pair mechanism (RTPM) for CIDEP. A sign of theJ value in the triplet naphthalene-galvinoxyl system in various solvents were discussed on the basis of the sign rule in the RTPM and the transient FT-EPR signal phase. One of possible explanation for the solvent viscosity dependence of the transient FT-EPR signal phase was pressented on the basis of hypothetical model of theJ value.  相似文献   

20.
The effects of protonation on the excited states oftrans-3-styrylpyridine (StP) andtrans-4,4′-dipyridylethylene (DPE) have been studied through measurements of the time-resolved electron paramagnetic resonance (EPR), ultraviolet absorption, and fluorescence spectra in methanol-water mixtures at 77 K. The assignment of the transient EPR signals was carried out with the aid of the stretched poly(vinyl alcohol) films method. From the analysis of these spectra it is concluded that the single protonation appears to have little effect on the zero-field splitting parameters and the anisotropy in the sublevel populating rates of the lowest excited triplet (T1) states of StP and DPE. However, the decay rate constants of the fluorescent states decrease and fluorescence quantum yields increase on single protonation. These experimental results suggest that the single protonation causes a decrease in the intersystem crossing (ISC) rates for the three T1 sublevels. These results are explained in terms of the vibronic mixing between the1nπ* and1ππ* states in the lowest excited singlet state. The assignment of StP to the specified conformer was carried out through the analysis of the anisotropic ISC processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号