首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The CCl(3)(+) and CBr(3)(+) cations have been synthesized by oxidation of a halide ligand of CCl(4) and CBr(4) at -78 degrees C in SO(2)ClF solvent by use of [XeOTeF(5)][Sb(OTeF(5))(6)]. The CBr(3)(+) cation reacts further with BrOTeF(5) to give CBr(OTeF(5))(2)(+), C(OTeF(5))(3)(+), and Br(2). The [XeOTeF(5)][Sb(OTeF(5))(6)] salt was also found to react with BrOTeF(5) in SO(2)ClF solvent at -78 degrees C to give the Br(OTeF(5))(2)(+) cation. The CCl(3)(+), CBr(3)(+), CBr(OTeF(5))(2)(+), C(OTeF(5))(3)(+), and Br(OTeF(5))(2)(+) cations and C(OTeF(5))(4) have been characterized in SO(2)ClF solution by (13)C and/or (19)F NMR spectroscopy at -78 degrees C. The X-ray crystal structures of the CCl(3)(+), CBr(3)(+), and C(OTeF(5))(3)(+) cations have been determined in [CCl(3)][Sb(OTeF(5))(6)], [CBr(3)][Sb(OTeF(5))(6)].SO(2)ClF, and [C(OTeF(5))(3)][Sb(OTeF(5))(6)].3SO(2)ClF at -173 degrees C. The CCl(3)(+) and CBr(3)(+) salts were stable at room temperature, whereas the CBr(n)(OTeF(5))(3-n)(+) salts were stable at 0 degrees C for several hours. The cations were found to be trigonal planar about carbon, with the CCl(3)(+) and CBr(3)(+) cations showing no significant interactions between their carbon atoms and the fluorine atoms of the Sb(OTeF(5))(6)(-) anions. In contrast, the C(OTeF(5))(3)(+) cation interacts with an oxygen of each of two SO(2)ClF molecules by coordination along the three-fold axis of the cation. The solid-state Raman spectra of the Sb(OTeF(5))(6)(-) salts of CCl(3)(+) and CBr(3)(+) have been obtained and assigned with the aid of electronic structure calculations. The CCl(3)(+) cation displays a well-resolved (35)Cl/(37)Cl isotopic pattern for the symmetric CCl(3) stretch. The energy-minimized geometries, natural charges, and natural bond orders of the CCl(3)(+), CBr(3)(+), CI(3)(+), and C(OTeF(5))(3)(+) cations and of the presently unknown CF(3)(+) cation have been calculated using HF and MP2 methods have been compared with those of the isoelectronic BX(3) molecules (X = F, Cl, Br, I, and OTeF(5)). The (13)C and (11)B chemical shifts for CX(3)(+) (X = Cl, Br, I) and BX(3) (X = F, Cl, Br, I) were calculated by the GIAO method, and their trends were assessed in terms of paramagnetic contributions and spin-orbit coupling.  相似文献   

2.
Reactions of Ti(NMe(2))(2)Cl(2) with a wide range of primary alkyl and arylamines RNH(2) afforded the corresponding 5-coordinate imido titanium compounds Ti(NR)Cl(2)(NHMe(2))(2) (R = (t)Bu (1), (i)Pr (2), CH(2)Ph (3), Ph (4), 2,6-C(6)H(3)Me(2) (5), 2,6-C(6)H(3)(i)Pr(2) (6), 2,4,6-C(6)H(2)F(3) (7), 2,3,5,6-C(6)HF(4) (8), C(6)F(5) (9), 4-C(6)H(4)Cl (10), 2,3,5,6-C(6)HCl(4) (11), 2-C(6)H(4)CF(3) (12), 2-C(6)H(4)(t)Bu (13)). The compounds 1-13 are monomeric in solution but in the solid state form either N-H...Cl hydrogen bonded dimers or chains or perfluorophenyl pi-stacked chains, depending on the imido R-group. The compound 13 was also prepared in a "one-pot" synthesis from RNH(2) and Ti(NMe(2))(4) and Me(3)SiCl. Reaction of certain Ti(NR)Cl(2)(NHMe(2))(2) compounds with an excess of pyridine afforded the corresponding bis- or tris-pyridine analogues [Ti(NR)Cl(2)(py)(x)](y) (x = 3, y = 1; x = y = 2), and the structure of Ti(2)(NC(6)F(5))(2)Cl(2)(mu-Cl)(2)(py)(4) shows pi-stacking of perfluorophenyl rings. Reaction of Ti(NMe(2))(2)Cl(2) with cross-linked aminomethyl polystyrene gave quantitative conversion to the corresponding solid-supported titanium imido complex. This paper represents the first detailed study of how supramolecular structures of imido compounds may be influenced by simple variation of the imido ligand N-substituent.  相似文献   

3.
The single-crystal X-ray structures of [XF(6)][Sb(2)F(11)] (X = Cl, Br, I) have been determined and represent the first detailed crystallographic study of salts containing the XF(6)(+) cations. The three salts are isomorphous and crystallize in the monoclinic space group P2(1)/n with Z = 4: [ClF(6)][Sb(2)F(11)], a = 11.824(2) A, b = 8.434(2) A, c = 12.088(2) A, beta = 97.783(6) degrees , V = 1194.3(4) A(3), R(1) = 0.0488 at -130 degrees C; [BrF(6)][Sb(2)F(11)], a = 11.931(2) A, b = 8.492(2) A, c = 12.103(2) A, beta = 97.558(4) degrees , V = 1215.5(4) A(3), R(1) = 0.0707 at -130 degrees C; [IF(6)][Sb(2)F(11)], a = 11.844(1) A, b = 8.617(1) A, c = 11.979(2) A, beta = 98.915(2) degrees , V = 1207.8(3) A(3), R(1) = 0.0219 at -173 degrees C. The crystal structure of [IF(6)][Sb(2)F(11)] was also determined at -100 degrees C and was found to crystallize in the monoclinic space group P2(1)/m with Z = 4, a = 11.885(1) A, b = 8.626(1) A, c = 12.000(1) A, beta = 98.44(1), V = 1216.9(2) A(3), R(1) = 0.0635. The XF(6)(+) cations have octahedral geometries with average Cl-F, Br-F, and I-F bond lengths of 1.550(4), 1.666(11) and 1.779(6) [-173 degrees C]/1.774(8) [-100 degrees C] A, respectively. The chemical shifts of the central quadrupolar nuclei, (35,37)Cl, (79,81)Br, and (127)I, were determined for [ClF(6)][AsF(6)] (814 ppm), [BrF(6)][AsF(6)] (2080 ppm), and [IF(6)][Sb(3)F(16)] (3381 ppm) in anhydrous HF solution at 27 degrees C, and spin-inversion-recovery experiments were used to determine the T(1)-relaxation times of (35)Cl (1.32(3) s), (37)Cl (2.58(6) s), (79)Br (24.6(4) ms), (81)Br (35.4(5) ms), and (127)I (6.53(1) ms). Trends among the central halogen chemical shifts and T(1)-relaxation times of XF(6)(+), XO(4)(-), and X(-) are discussed. The isotropic (1)J-coupling constants and reduced coupling constants for the XF(6)(+) cations and isoelectronic hexafluoro species of rows 3-6 are empirically assessed in terms of the relative contributions of the Fermi-contact, spin-dipolar, and spin-orbit mechanisms. Electronic structure calculations using Hartree-Fock, MP2, and local density functional methods were used to determine the energy-minimized gas-phase geometries, atomic charges, and Mayer bond orders of the XF(6)(+) cations. The calculated vibrational frequencies are in accord with the previously published assignments and experimental vibrational frequencies of the XF(6)(+) cations. Bonding trends within the XF(6)(+) cation series have been discussed in terms of natural bond orbital (NBO) analyses, the ligand close-packed (LCP) model, and the electron localization function (ELF).  相似文献   

4.
Six dimeric aminoalanes of formula [Me(2)Al-mu-N(H)Ar(F)](2)(Ar(F)= 4-C(6)H(4)F (1), 2-C(6)H(4)F (2), 3,5-C(6)H(3)F(2)(3), 2,3,4,5-C(6)HF(4)(4), 2,3,5,6-C(6)HF(4)(5) and C(6)F(5)(6)) have been prepared by treatment of the appropriate fluoroaniline with AlMe(3) in toluene solution at 25 degrees C. The structures of 1-6 were determined by X-ray crystallography.  相似文献   

5.
In this work, the cation and anion products of the reactions between platinum clusters produced by laser ablation and the benzene molecules seeded in argon have been studied using a high-resolution reflectron time-of-flight mass spectrometer (RTOFMS). The dominant cation products are [C(6n)H(6n - k)](+) and [Pt(m)(C(6)H(6))(n)](+) complexes, while the dominant anion products are dehydrogenated species, [C(6)H(5)PtH](-), [PtC(12)H(k)](-) and [Pt(m)C(6)H(4) . . . (C(6)H(6))(n)](-), etc. Some important intermediate structures ([PtC(6)H(6)](+), [Pt(C(6)H(6))(2)](+), [Pt(2)(C(6)H(6))(3)](+), [C(6)H(5)PtH](-), [Pt(2)C(6)H(4)](-), [Pt(3)C(6)H(4)](-) and [Pt(4)C(6)H(4)](-)) have been analyzed using density functional theory (DFT) calculations. Different reaction mechanisms are proposed for platinum cluster cations and anions with benzene, respectively.  相似文献   

6.
Reaction of (C5Me5)2U(=N-2,4,6-(t)Bu3-C6H2) or (C5Me5)2U(=N-2,6-(i)Pr2-C6H3)(THF) with 5 equiv of CuX(n) (n = 1, X = Cl, Br, I; n = 2, X = F) affords the corresponding uranium(V)-imido halide complexes, (C5Me5)2U(=N-Ar)(X) (where Ar = 2,4,6-(t)Bu3-C6H2 and X = F (3), Cl (4), Br (5), I (6); Ar = 2,6-(i)Pr2-C6H3 and X = F (7), Cl (8), Br (9), I (10)), in good isolated yields of 75-89%. These compounds have been characterized by a combination of single-crystal X-ray diffraction, (1)H NMR spectroscopy, elemental analysis, mass spectrometry, cyclic voltammetry, UV-visible-NIR absorption spectroscopy, and variable-temperature magnetic susceptibility. The uranium L(III)-edge X-ray absorption spectrum of (C5Me5)2U(=N-2,4,6-(t)Bu3-C6H2)(Cl) (4) was analyzed to obtain structural information, and the U=N imido (1.97(1) A), U-Cl (2.60(2) A), and U-C5Me5 (2.84(1) A) distances were consistent with those observed for compounds 3, 5, 6, 8-10, which were all characterized by single-crystal X-ray diffraction studies. All (C5Me5)2U(=N-Ar)(X) complexes exhibit U(V)/U(IV) and U(VI)/U(V) redox couples by voltammetry, with the potential separation between these metal-based couples remaining essentially constant at approximately 1.50 V. The electronic spectra are comprised of pi-->pi* and pi-->nb(5f) transitions involving electrons in the metal-imido bond, and metal-centered f-f bands illustrative of spin-orbit and crystal-field influences on the 5f(1) valence electron configuration. Two distinct sets of bands are attributed to transitions derived from this 5f(1) configuration, and the intensities in these bands increase dramatically over those found in spectra of classical 5f(1) actinide coordination complexes. Temperature-dependent magnetic susceptibilities are reported for all complexes with mu(eff) values ranging from 2.22 to 2.53 mu(B). The onset of quenching of orbital angular momentum by ligand fields is observed to occur at approximately 40 K in all cases. Density functional theory results for the model complexes (C5Me5)2U(=N-C6H5)(F) (11) and (C5Me5)2U(=N-C6H5)(I) (12) show good agreement with experimental structural and electrochemical data and provide a basis for assignment of spectroscopic bands. The bonding analysis describes multiple bonding between the uranium metal center and imido nitrogen which is comprised of one sigma and two pi interactions with variable participation of 5f and 6d orbitals from the uranium center.  相似文献   

7.
The complex Re(III)(benzil)(PPh(3))Cl(3) (2) is used to synthesize a variety of Re(III) and Re(II) polypyridyl complexes of the type cis-[Re(III)(L(2))(2)Cl(2)](+), [Re(II)(L(2))(3)](2+), Re(III)(L(3))Cl(3), [Re(III)(L(3))(2)Cl](2+), and [Re(III)(L(4))Cl(2)](+), where L(2) = bpy (3and 6), tbpy (4 and 7), phen (5 and 8); L(3) = terpy (9and 10); L(4) = TMPA (11). The complex cis-[Re(III)(bpy)(2)Cl(2)](+) (3) is a useful synthon in the formation of complexes of the type [Re(bpy)(2)L(x)()](n)()(+) that are six- or seven-coordinate Re(III) complexes (13, 16, and 18) or octahedral Re(II) or Re(I) complexes (12 and 17). The [Re(III)(terpy)(2)Cl](2+) (10) complex can be reduced to form the Re(I) complex, [Re(I)(terpy)(2)](+) (21) and then electrochemically reoxidized to form new complexes of the type [Re(III)(terpy)(2)L](n)()(+). Similar behavior is observed for the [Re(II)(bpy)(3)](2+) (6) complex where [Re(III)(bpy)(3)((t)BuNC)](3+) (20) and [Re(I)(bpy)(3)](+) (19) may be formed. The electrochemistry of these complexes is discussed in relation to their reactivity and the observed pi-acidity of the polypyridyl ligands. In addition, X-ray crystal structures for cis-[Re(III)(bpy)(2)Cl(2)]PF(6) (3) and [Re(I)(bpy)(3)]PF(6) (19) are reported. cis-[Re(III)(bpy)(2)Cl(2)]PF(6) (3, ReC(20)H(16)N(4)Cl(2)F(6)P) crystallizes in the monoclinic space group C2/c with Z = 4 and lattice parameters a = 15.043(5) ?, b = 13.261(4) ?, c = 12.440(4) ?, and beta = 108.86(2) degrees at -100 degrees C. [Re(I)(bpy)(3)]PF(6) (19, ReC(30)H(24)N(6)F(6)P) crystallizes in the rhombohedral space group R&thremacr;c(h) (No. 167) with Z = 12 and lattice parameters a = 13.793(3) ? and c = 51.44(3) ? at -100 degrees C.  相似文献   

8.
A series of halogenated, partially fluorinated tolans of general formula p-X-C6H4-C[triple bond]C-C6F5[X=I (1), Br (2), Cl (3), F (4)] and p-X-C6F4-C[triple bond]C-C6H5[X=I (5), Br (6)] have been prepared via palladium-catalysed Sonogashira cross-coupling, or for X=Cl (7), by nucleophilic aromatic substitution reactions. The single-crystal X-ray structures of 1-3 and 5-6 have been determined. The structures reveal that the molecular packing is characterized by either arene-perfluoroarene interactions (3), or halogen-halogen interactions (isomorphous 1 and 2), or neither (isomorphous 5 and 6). The structure of represents the first fully determined crystal structure of a compound that contains a halogen atom other than fluorine, in which arene-perfluoroarene interactions are present.  相似文献   

9.
H Isago  Y Kagaya 《Inorganic chemistry》2012,51(15):8447-8454
The first arsenic(V)-phthalocyanines, [As(tbpc)X(2)](+), where tbpc denotes tetra(tert-butyl)phthalocyaninate, C(48)H(48)N(8)(2-) and X = F, Cl, and Br) have been prepared through an appropriate oxidative addition process to a highly soluble arsenic(III) derivative, [As(tbpc)](+). Among them, [As(tbpc)F(2)](+) has been isolated as PF(6)(-) salt. Unlike conventional metal derivatives of phthalocyanines, they show a significantly red-shifted (by >1000 cm(-1)) Q-band and facile reduction of the macrocyclic ligand (redox potentials for [As(tbpc)F(2)](+) have been determined by cyclic voltammetry; 1.13 V vs ferricinium(+)/ferrocene (tbpc(-/2-)), -0.45 V (tbpc(2-/3-)), and -0.90 V (tbpc(3-/4-)), of which the values are anodically shifted by about 1 V) as compared to those of conventional phthalocyanines. Although the anomaly in their spectral and electrochemical properties is similar to that of the known antimony analogues, the arsenic-phthalocyanines have been found less stable.  相似文献   

10.
The iron complexes CpFe(P(Ph)(2)N(Bn)(2))Cl (1-Cl), CpFe(P(Ph)(2)N(Ph)(2))Cl (2-Cl), and CpFe(P(Ph)(2)C(5))Cl (3-Cl)(where P(Ph)(2)N(Bn)(2) is 1,5-dibenzyl-1,5-diaza-3,7-diphenyl-3,7-diphosphacyclooctane, P(Ph)(2)N(Ph)(2) is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane, and P(Ph)(2)C(5) is 1,4-diphenyl-1,4-diphosphacycloheptane) have been synthesized and characterized by NMR spectroscopy, electrochemical studies, and X-ray diffraction. These chloride derivatives are readily converted to the corresponding hydride complexes [CpFe(P(Ph)(2)N(Bn)(2))H (1-H), CpFe(P(Ph)(2)N(Ph)(2))H (2-H), CpFe(P(Ph)(2)C(5))H (3-H)] and H(2) complexes [CpFe(P(Ph)(2)N(Bn)(2))(H(2))]BAr(F)(4), [1-H(2)]BAr(F)(4), (where BAr(F)(4) is B[(3,5-(CF(3))(2)C(6)H(3))(4)](-)), [CpFe(P(Ph)(2)N(Ph)(2))(H(2))]BAr(F)(4), [2-H(2)]BAr(F)(4), and [CpFe(P(Ph)(2)C(5))(H(2))]BAr(F)(4), [3-H(2)]BAr(F)(4), as well as [CpFe(P(Ph)(2)N(Bn)(2))(CO)]BAr(F)(4), [1-CO]Cl. Structural studies are reported for [1-H(2)]BAr(F)(4), 1-H, 2-H, and [1-CO]Cl. The conformations adopted by the chelate rings of the P(Ph)(2)N(Bn)(2) ligand in the different complexes are determined by attractive or repulsive interactions between the sixth ligand of these pseudo-octahedral complexes and the pendant N atom of the ring adjacent to the sixth ligand. An example of an attractive interaction is the observation that the distance between the N atom of the pendant amine and the C atom of the coordinated CO ligand for [1-CO]BAr(F)(4) is 2.848 ?, considerably shorter than the sum of the van der Waals radii of N and C atoms. Studies of H/D exchange by the complexes [1-H(2)](+), [2-H(2)](+), and [3-H(2)](+) carried out using H(2) and D(2) indicate that the relatively rapid H/D exchange observed for [1-H(2)](+) and [2-H(2)](+) compared to [3-H(2)](+) is consistent with intramolecular heterolytic cleavage of H(2) mediated by the pendant amine. Computational studies indicate a low barrier for heterolytic cleavage of H(2). These mononuclear Fe(II) dihydrogen complexes containing pendant amines in the ligands mimic crucial features of the distal Fe site of the active site of the [FeFe]-hydrogenase required for H-H bond formation and cleavage.  相似文献   

11.
Four Fe(III) compounds and one Fe(II) compound containing mononuclear, homoleptic, fluorinated phenolate anions of the form [Fe(OAr)(m)](n-) have been prepared in which Ar(F) = C(6)F(5) and Ar' = 3,5-C(6)(CF(3))(2)H(3): (Ph(4)P)(2)[Fe(OAr(F))(5)], 1, (Me(4)N)(2)[Fe(OAr(F))(5)], 2, {K(18-crown-6)}(2)[Fe(OAr(F))(5)], 3a, {K(18-crown-6)}(2)[Fe(OAr')(5)], 3b, and {K(18-crown-6)}(2)[Fe(OAr(F))(4)], 6. Two dinuclear Fe(III) compounds have also been prepared: {K(18-crown-6)}(2)[(OAr(F))(3)Fe(μ(2)-O)Fe(OAr(F))(3)], 4, and {K(18-crown-6)}(2)[(OAr(F))(3)Fe(μ(2)-OAr(F))(2)Fe(OAr(F))(3)], 5. These compounds have been characterized with UV-vis spectroscopy, elemental analysis, Evans method susceptibility, and X-ray crystallography. All-electron, geometry-optimized DFT calculations on four [Ti(IV)(OAr)(4)] and four [Fe(III)(OAr)(4)](-) species (Ar = 2,3,5,6-C(6)Me(4)H, C(6)H(5), 2,4,6-C(6)Cl(3)H(2), C(6)F(5)) with GGA-BP and hybrid B3LYP basis sets demonstrated that, under D(2d) symmetry, π donation from the O 2p orbitals is primarily into the d(xy) and d(z(2)) orbitals. The degree of donation is qualitatively consistent with expectations based on ligand Br?nsted basicity and supports the contention that fluorinated phenolate ligands facilitate isolation of nonbridged homoleptic complexes due to their reduced π basicity at oxygen.  相似文献   

12.
Different inorganic and organometallic gold(III) and gold(I) complexes have been tested in the addition of water and methanol to terminal alkynes. Anionic and neutral organometallic gold(III) compounds can efficiently mediate these reactions in neutral media in refluxing methanol. The compounds are added in catalytic amounts (1.6-4.5 mol % with respect to the alkyne). Thus, compounds of the general formula Q[AuRCl(3)], Q[AuR(2)Cl(2)], [AuRCl(2)](2), and [AuR(2)Cl](2) (Q = BzPPh(3)(+), PPN: N(PPh(3))(2)(+) or N(Bu)(4)(+); R = C(6)F(5) or 2,4,6-(CH(3))(3)C(6)H(2)) seem to behave as Lewis acids in nucleophilic additions to triple bonds. Some intermediates could be detected in the stoichiometric reaction between [Au(C(6)F(5))(2)Cl](2) and phenylacetylene that was followed by variable temperature (1)H, (19)F[(1)H], COSY (19)F[(1)H]-(19)F[(1)H], and (2)H[(1)H] NMR experiments. Compound [Au(C(6)F(5))(2)Cl](2) is also able to catalyze the hydration of phenylacetylene at room temperature. A plausible mechanism for the hydration reaction has been proposed.  相似文献   

13.
Deprotonation of mixtures of the triazene complexes [RhCl(CO)2(p-MeC6H4NNNHC6H4Me-p)] and [PdCl(eta(3)-C3H5)(p-MeC6H4NNNHC6H4Me-p)] or [PdCl2(PPh3)(p-MeC6H4NNNHC6H4Me-p)] with NEt3 gives the structurally characterised heterobinuclear triazenide-bridged species [(OC)2Rh(mu-p-MeC6H4NNNC6H4Me-p)2PdLL'] {LL' = eta(3)-C3H5 1 or Cl(PPh3) 2} which, in the presence of Me3NO, react with [NBu(n)4]I, [NBu(n)4]Br, [PPN]Cl or [NBu(n)4]NCS to give [(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2PdCl(PPh3)]- (X = I 3-, Br 4-, Cl 5- or NCS 6-) and [NBu(n)4][(OC)XRh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 7- or Br 8-). The allyl complexes 7- and 8- undergo one-electron oxidation to the corresponding unstable neutral complexes 7 and 8 but, in the presence of the appropriate halide, oxidative substitution results in the stable paramagnetic complexes [NBu(n)4][X2Rh(mu-p-MeC6H4NNNC6H4Me-p)2Pd(eta(3)-C3H5)], (X = I 9- or Br 10-). X-Ray structural (9-), DFT and EPR spectroscopic studies are consistent with the unpaired electron of 9- and 10- localised primarily on the Rh(II) centre of the [RhPd]4+ core, which is susceptible to oxygen coordination at low temperature to give Rh(III)-bound superoxide.  相似文献   

14.
The dissociative photoionization mechanism of internal energy selected C(2)H(3)F(+), 1,1-C(2)H(2)F(2)(+), C(2)HF(3)(+) and C(2)F(4)(+) cations has been studied in the 13-20 eV photon energy range using imaging photoelectron photoion coincidence spectroscopy. Five predominant channels have been found; HF loss, statistical and non-statistical F loss, cleavage of the C-C bond post H or F-atom migration, and cleavage of the C=C bond. By modelling the breakdown diagrams and ion time-of-flight distributions using statistical theory, experimental 0 K appearance energies, E(0), of the daughter ions have been determined. Both C(2)H(3)F(+) and 1,1-C(2)H(2)F(2)(+) are veritable time bombs with respect to dissociation via HF loss, where slow dissociation over a reverse barrier is followed by an explosion with large kinetic energy release. The first dissociative ionization pathway for C(2)HF(3) and C(2)F(4) involves an atom migration across the C=C bond, giving CF-CHF(2)(+) and CF-CF(3)(+), respectively, which then dissociate to form CHF(2)(+), CF(+) and CF(3)(+). The nature of the F-loss pathway has been found to be bimodal for C(2)H(3)F and 1,1-C(2)H(2)F(2), switching from statistical to non-statistical behaviour as the photon energy increases. The dissociative ionization of C(2)F(4) is found to be comprised of two regimes. At low internal energies, CF(+), CF(3)(+) and CF(2)(+) are formed in statistical processes. At high internal energies, a long-lived excited electronic state is formed, which loses an F atom in a non-statistical process and undergoes statistical redistribution of energy among the nuclear degrees of freedom. This is followed by a subsequent dissociation. In other words only the ground electronic state phase space stays inaccessible. The accurate E(0) of CF(3)(+) and CF(+) formation from C(2)F(4) together with the now well established Δ(f)H(o) of C(2)F(4) yield self-consistent enthalpies of formation for the CF(3), CF, CF(3)(+) and CF(+) species.  相似文献   

15.
The reaction of the in situ generated cyclooctene iridium(I) derivative trans-[IrCl(C8H14)(PiPr3)2] with benzene at 80 degrees C gave a mixture of the five-coordinate dihydrido and hydrido(phenyl) iridium(III) complexes [IrH2(Cl)(PiPr3)2] 2 and [IrH(C6H5)(Cl)(PiPr3)2] 3 in the ratio of about 1 : 2. The chloro- and fluoro-substituted arenes C6H5X (X = Cl, F), C6H4F2 and C6H4F(CH3) reacted also by C-H activation to afford the corresponding aryl(hydrido) iridium(III) derivatives [IrH(C6H4X)(Cl)(PiPr3)2] 7, 8, [IrH(C6H3F2)(Cl)(PiPr3)2] 9-11 and [IrH[C6H3F(CH3)](Cl)(PiPr3)2] 12, 13, respectively. The formation of isomeric mixtures had been detected by 1H, 13C, 19F and 31P NMR spectroscopy. Treatment of 3 and 7-13 with CO gave the octahedral carbonyl iridium(III) complexes [IrH(C6H3XX')(Cl)(CO)(PiPr3)2] 5, 14-20 without the elimination of the arene. The reactions of trans-[IrCl(C8H14)(PiPr3)2] with aryl ketones C6H5C(O)R (R = Me, Ph), aryl ketoximes C6H5C(NOH)R (R = Me, Ph) and benzaloxime C6H5C(NOH)H resulted in the formation of six-coordinate aryl(hydrido) iridium(III) compounds 21-25 with the aryl ligand coordinated in a bidentate kappa2-C,O or kappa2-C,N fashion. With C6H5C(O)NH2 as the substrate, the two isomers [IrH[kappa2-N,O-NHC(O)C6H5](Cl)(PiPr3)2] 26 and [IrH[kappa2-C,O-C6H4C(O)NH2](Cl)(PiPr3)2] 27 were prepared stepwise. Treatment of trans-[IrCl(C8H14)(PiPr3)2] with benzoic acid gave the benzoato(hydrido) complex [IrH[kappa2-O,O-O2CC6H5](Cl)(PiPr3)2] 29 which did not rearrange to the kappa2-C,O isomer.  相似文献   

16.
Reaction of the hindered phosphino- and arsinoboranes, Ar*Pn(H)-B(Br)Tmp (Ar* = -C6H3-2,6-(C6H2-2,4,6-iPr3)2; Tmp = 2,2,6,6-tetramethylpiperidino; Pn = P and As, 1 and 3, respectively) with 4-dimethylaminopyridine, DMAP, afforded the boranylidenephosphane and arsane, Ar*Pn=B(DMAP)Tmp (Pn = P and As, 2 and 4) as deep red-purple solids. The analogous aminoboranes Ar'N(H)-B(X)Tmp (Ar' = -C6H3-2,6-(C6H2-2,4,6-Me3)2; X = Cl and Br; 5 and 6) did not display any reactivity with DMAP, but in the presence of the amide base, Na[N(SiMe3)2], the clean formation of the uncomplexed iminoborane Ar'NBTmp (7) was observed. Attempts to generate an Sb=B bond were unsuccessful, as the required stibinoborane precursor, Ar*Sb(H)-B(Br)Tmp, could not be prepared; in place of clean Sb-B bond formation, the reduced product Ar*Sb=SbAr* was obtained. All compounds were characterized spectroscopically, and the X-ray crystal structures of 1, 2, 4, 6, and 7 were determined.  相似文献   

17.
The isomers [Mo2Cp2(mu-kappa(1):kappa(1),eta(6)-PR*)(CO)2] (1) and [Mo2Cp(mu-kappa(1):kappa(1),eta(5)-PC5H4)(CO)2(eta(6)-HR*)] (2) (Cp = eta(5)-C5H5; R* = 2,4,6-C6H2(t)Bu3) react with [AuCl(THT)] and with the cation [Au(THT)2](+) (THT = tetrahydrothiophene) to give phosphinidene-bridged Mo2Au complexes resulting from the addition of an AuCl or Au(THT)(+) electrophile to their multiple P-Mo bonds. Removal of the Cl(-) or THT ligand from these derivatives causes a dimerization of the trinuclear structures to give the cationic derivative [{AuMo2Cp(mu3-kappa(1):kappa(1):kappa(1),eta(5)-PC5H4)(CO)2(eta(6)-HR*)}2](2+), which displays a novel H-shaped metal core held by strong Mo-Au dative bonds [2.768(1) A] and an aurophilic interaction [Au-Au = 3.022(1) A].  相似文献   

18.
We report the enhanced reactivity of hydroxyl substituted CuN(3)(+) derivatives, where N(3) = tris(picolinyl)methane (tripic) and related derivatives, upon deprotonation of the O-H functionality. The work capitalizes on new methodology for incorporating hydroxyl groups into the second coordination sphere of copper centers. The key synthetic methodology relies on Pd-catalyzed coupling reactions of dilithiated 6-methyl-2-pyridone with bromopyridyl derivatives. These building blocks allow the preparation of tridentate N(3) ligands with OH and OMe substituents flanking the fourth coordination site of a tetrahedral complex. Coupling of these tridendate ligands gives the corresponding hydroxy- and methoxy-functionalized bistripodal ligands. [Cu[bis(2-methylpyrid-6-yl)(2-hydroxypyrid-6-yl)methane](NCMe)](+) ([Cu(2H)(NCMe)](+)) oxidizes readily in air to afford the mixed valence Cu(1.5) dimer ([Cu(2)(2)(2)](+)). Formation of [Cu(2)(2)(2)](+) is accelerated in the presence of base and can be reversed with a combination of decamethylferrocene and acid. The reactivity of [Cu(2H)(NCMe)](+) with dioxygen requires deprotonation of the hydroxyl substituent: neither [Cu(tripic)(NCMe)](+) nor the methoxy-derivatives displayed comparable reactivity. A related mixed valence dimer formed upon oxidation of the dicopper(I) complex of a tetrahydroxy bis(tridentate) ligand, [Cu(2)(6H(4))(NCMe)(2)](2+). The dicopper(I) complex of the analogous tetramethoxy N(6)-ligand, [Cu(2)(5)(NCMe)(2)](2+), instead reversibly binds O(2). Deprotonation of [Cu(2H)(CO)](+) and [Cu(2H)(NCMe)](+) afforded the neutral derivatives Cu(2)(CO) and Cu(2)(2)(2), respectively. The dicopper(I) derivative Cu(2)(2)(2) can be reoxidized, reprotonated, and carbonylated. The silver(I) complex, [Ag(2H)(NCMe)]BF(4), forms an analogous neutral dimer (Ag(2)(2)(2)) upon deprotonation of the hydroxyl group. The structures of ligand 2H, [Cu(2)(5)(NCMe)(2)](+), [Cu(2)(2)(2)](+), [Cu(2)(6H(2))](+), [Ag(2H)(NCMe)]BF(4), and Ag(2)(2)(2) were confirmed by single crystal X-ray diffraction.  相似文献   

19.
The coordination properties of the EN ligands N-(2-pyridinyl)amino-diphenylphosphine sulfide, N-(2-pyridinyl)amino-diisopropylphosphine sulfide, N-(2-pyridinyl)amino-diphenylphosphine selenide, N-(2-pyridinyl)amino-diisopropylphosphine selenide towards copper(I) precursors CuX (X = Br, I), [Cu(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), and [Cu(CH(3)CN)(4)]PF(6) were studied. Treatment of CuX with EN ligands resulted in the formation of tricoordinate complexes of the type [Cu(κ(2)(E,N)-EN)X]. The reaction of [Cu(IPr)Cl] with EN ligands, followed by halide abstraction with AgSbF(6), afforded cationic tricoordinate complexes [Cu(κ(2)(S,N)-EN)(IPr)](+), while the reaction of [Cu(CH(3)CN)(4)](+) with two equivalents of EN ligands yielded tetrahedral complexes [Cu(κ(2)(E,N)-EN)(2)](+). Halide removal from [Cu(κ(2)(S,N)-SN)I] with silver salts in the presence of L = CH(3)CN and CNtBu afforded dinuclear complexes of the type [Cu(κ(2)(S,N),μ(S)-SN)(L)](2)(2+) containing bridging SN ligands. With the terminal alkynes HC≡CC(6)H(4)Me and HC≡CC(6)H(4)OMe, complexes of the formula [Cu(κ(2)(S,N)-SN-iPr)(η(2)-HC≡CC(6)H(4)Me)](+) and [Cu(κ(2)(S,N)-SN-iPr)(η(2)-HC≡CC(6)H(4)OMe)](+) were obtained. The mononuclear nature of these compounds was supported by DFT calculations. Most complexes were also characterized by X-ray crystallography.  相似文献   

20.
A number of copper salts, Cu(OOCCH(3))(2), Cu(ClO(4))(2), Cu(NO(3))(2), CuCl(2) and CuSO(4) have been tested for their ability to form binuclear copper-caffeine complexes. The electrospray ionization (ESI) mass spectra of methanol solution containing caffeine and CuCl(2) or CuSO(4) show signals of two copper atom containing ions, so the signals correspond to binuclear complexes: [2Caf + Cu(2)SO(4)](+), [2Caf + Cu(2)](+), [2Caf + Cu(2)Cl](+), [2Caf + Cu(2)Cl(2)](+) and [2Caf + Cu(2)Cl(3)](+). Sulfate and chloride anion are characterized by charge densities higher than those of the carboxylate, nitrate and perchlorate anion. Thus, due to the electrostatic forces, the binuclear complexes containing SO(4)(2-) or Cl(-) can survive the transfer from solution to the gas phase and then can successfully be observed on ESI mass spectra. The ion [2Caf + Cu(2)Cl(3)](+) is present in solution and could be detected when using methanol/chloroform as solvent. The ions [2Caf + Cu(2)](+), [2Caf + Cu(2)Cl](+) and [2Caf + Cu(2)Cl(2)](+) are formed from the [2Caf + Cu(2)Cl(3)](+) ion (by subsequent loss of Cl atoms) on transfer from the solution to the gas phase or in the gas phase. The ion [2Caf + Cu(2)](+) does not contain a bridging agent, thus it is reasonable to assume that it contains a Cu-Cu bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号