首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamical properties of ionic melts formed from mixtures of LiCl and KCl have been studied across the full composition range in computer simulations of sufficient length to enable reliable values for such collective transport coefficients as the viscosity, conductivity, and internal mobilities to be determined reliably. Interest centers on the nontrivial concentration dependence exhibited by these transport coefficients, which agrees well with that observed experimentally, and in relating this to the strength of the association between an ion and its first coordination shell. The relationships between the various transport coefficients, such as those between the diffusion coefficient and the viscosity (Stokes-Einstein) and the conductivity (Nernst-Einstein) also exhibit composition dependences that reflect this association. The connection between the internal mobility and two measures of the coordination shell dynamics (the cage relaxation time and the self-exchange velocity) is explored; it is shown that the self-exchange velocity follows the composition and temperature dependence of the internal mobility very well. Finally, it is shown that allowing for anion polarization in the interaction model increases the mobility of all species without changing the structure of the melt discernibly, with the largest effect being found for the Li(+) ion.  相似文献   

2.
A self-consistent microscopic theory has been used to calculate the limiting ionic conductivity of unipositive rigid ions in formamide at different temperatures. The calculated results are found to be in good agreement with the experimental data. The above theory can also predict successfully the experimentally observed temperature dependence of total ionic conductivity of a given uniunivalent electrolyte in formamide. The effects of dynamic polar solvent response on ionic conductivity have been investigated by studying the time dependent progress of solvation of a polarity probe dissolved in formamide. The intermolecular vibration (libration) band that is often detected in the range of 100-200 cm(-1) in formamide is found to play an important role in determining both the conductivity and the ultrafast polar solvent response in formamide. The time dependent decay of polar solvation energy in formamide has been studied at three different temperatures, namely, at 283.15, 298.15, and 328.15 K. While the predicted decay at 298.15 K is in good agreement with the available experimental data, the calculated results at the other two temperatures should be tested against experiments.  相似文献   

3.
4.
The solvation of the protein ubiquitin (PDB entry "1UBQ") in hydrated molecular ionic liquids was studied for varying water content or, equivalently, a diversity of ionic strengths. The cations and anions were 1-ethyl-3-methylimidazolium and trifluoromethanesulfonate, respectively. The protein's shape and stability as well as the solvation structure, the shell dynamics and the shell resolved dielectric properties were investigated by means of molecular dynamics simulations. The respective simulation trajectories covered 200 nanoseconds. Besides the characteristic point already found for the zinc finger motif at the transition from the pure aqueous environment to the ionic solution an even more pronounced state is found where several properties show extremal behaviour (maximum or minimum). This second characteristic point occurs at the transition from the ionic solution to the hydrated ionic melt where water changes its role from a solvent to a co-solvent. Most of the data analysis presented here is based on the Voronoi decomposition of space.  相似文献   

5.
6.
7.
We propose a novel self-diffusion model for ionic liquids on an atomic level of detail. The model is derived from molecular dynamics simulations of guanidinium-based ionic liquids (GILs) as a model case. The simulations are based on an empirical molecular mechanical force field, which has been developed in our preceding work, and it relies on the charge distribution in the actual liquid. The simulated GILs consist of acyclic and cyclic cations that were paired with nitrate and perchlorate anions. Self-diffusion coefficients are calculated at different temperatures from which diffusive activation energies between 32-40 kJ/mol are derived. Vaporization enthalpies between 174-212 kJ/mol are calculated, and their strong connection with diffusive activation energies is demonstrated. An observed formation of cavities in GILs of up to 6.5% of the total volume does not facilitate self-diffusion. Instead, the diffusion of ions is found to be determined primarily by interactions with their immediate environment via electrostatic attraction between cation hydrogen and anion oxygen atoms. The calculated average time between single diffusive transitions varies between 58-107 ps and determines the speed of diffusion, in contrast to diffusive displacement distances, which were found to be similar in all simulated GILs. All simulations indicate that ions diffuse by using a brachiation type of movement: a diffusive transition is initiated by cleaving close contacts to a coordinated counterion, after which the ion diffuses only about 2 A until new close contacts are formed with another counterion in its vicinity. The proposed diffusion model links all calculated energetic and dynamic properties of GILs consistently and explains their molecular origin. The validity of the model is confirmed by providing an explanation for the variation of measured ratios of self-diffusion coefficients of cations and paired anions over a wide range of values, encompassing various ionic liquid classes as well as the simulated GILs. The proposed diffusion model facilitates the qualitative a priori prediction of the impact of ion modifications on the diffusive characteristics of new ionic liquids.  相似文献   

8.
The preferential solvation of solutes in mixed solvent systems is an interesting phenomenon that plays important roles in solubility and kinetics. In the present study, solvation of a lithium atom in aqueous ammonia solution has been investigated from first principles molecular dynamics simulations. Solvation of alkali metal atoms, like lithium, in aqueous and ammonia media is particularly interesting because the alkali metal atoms release their valence electrons in these media so as to produce solvated electrons and metal counterions. In the present work, first principles simulations are performed employing the Car-Parrinello molecular dynamics method. Spontaneous ionization of the Li atom is found to occur in the mixed solvent system. From the radial distribution functions, it is found that the Li(+) ion is preferentially solvated by water and the coordination number is mostly four in its first solvation shell and exchange of water molecules between the first and second solvation shells is essentially negligible in the time scale of our simulations. The Li(+) ion and the unbound electron are well separated and screened by the polar solvent molecules. Also the unbound electron is primarily captured by the hydrogens of water molecules. The diffusion rates of Li(+) ion and water molecules in its first solvation shell are found to be rather slow. In the bulk phase, the diffusion of water is found to be slower than that of ammonia molecules because of strong ammonia-water hydrogen bonds that participate in solvating ammonia molecules in the mixture. The ratio of first and second rank orientational correlation functions deviate from 3, which suggests a deviation from the ideal Debye-type orientational diffusion. It is found that the hydrogen bond lifetimes of ammonia-ammonia pairs is very short. However, ammonia-water H-bonds are found to be quite strong when ammonia acts as an acceptor and these hydrogen bonds are found to live longer than even water-water hydrogen bonds.  相似文献   

9.
The structural features of solvation and diffusion characteristics of U(IV) ion in model 2LiF-BeF2 melts (Flibe) at 750–1600 K have been studied by the molecular dynamics simulation method. The diffusion activation energy of U(IV) ion in the 2LiF-BeF2 melt has been calculated.  相似文献   

10.
The physicochemical properties of alkali halide solutions have long been attributed to the collective interactions between ions and water molecules in the solution, yet the structure of water in these systems and its effect on the equilibrium and dynamic properties of these systems are not clearly understood. Here, we present a systematic view of water structure in concentrated alkali halide solutions using molecular dynamics simulations. The results of the simulations show that the size of univalent ions in the solution has a significant effect on the dynamics of ions and other transport properties such as the viscosity that are correlated with the structural properties of water in aqueous ionic solution. Small cations (e.g., Li+) form electrostatically stabilized hydrophilic hydration shells that are different from the hydration shells of large ions (e.g., Cs+) which behave more like neutral hydrophobic particles, encapsulated by hydrogen-bonded hydration cages. The properties of solutions with different types of ion solvation change in different ways as the ion concentration increases. Examples of this are the diffusion coefficients of the ions and the viscosities of solutions. In this paper we use molecular dynamics (MD) simulations to study the changes in the equilibrium and transport properties of LiCl, RbCl, and CsI solutions at concentrations from 0.22 to 3.97 M.  相似文献   

11.
The solvation time correlation function for solvation in liquid water was measured recently. The solvation was found to be very fast, with a time constant equal to 55 fs. In this article we present theoretical studies on solvation dynamics of ionic and dipolar solutes in liquid water, based on the molecular hydrodynamic approach developed earlier. The molecular hydrodynamic theory can successfully predict the ultrafast dynamics of solvation in liquid water as observed from recent experiments. The present study also reveals some interesting aspects of dipolar solvation dynamics, which differs significantly from that of ionic solvation. Dedicated to Prof. C N R Rao on his 60th birthday  相似文献   

12.
Molecular Dynamics simulations are used to examine the title issue for the I-/HOD/D2O solution system in connection with recent ultrafast infrared spectroscopic experiments. It is argued that the long "modulation time" associated with the spectral diffusion of the OH frequency, extracted in these experiments, should be interpreted as reflecting the escape time of an HOD from the first hydration shell of the I- ion, i.e., the residence time of an HOD in this solvation shell. Shorter time features related to the oscillation of the OH ...I- hydrogen bond and the breaking and making of this bond are also discussed.  相似文献   

13.
Thermodynamics, structure, and dynamics of an ionic liquid based on a quaternary ammonium salt with ether side chain, namely, N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM2E TFSI, are investigated by molecular dynamics (MD) simulations. Average density and configurational energy of simulated MOENM2E TFSI are interpreted with models that take into account empirical ionic volumes. A throughout comparison of the equilibrium structure of MOENM2E TFSI with previous results for the more common ionic liquids based on imidazolium cations is provided. Several time correlation functions are used to reveal the microscopic dynamics of MOENM2E TFSI. Structural relaxation is discussed by the calculation of simultaneous space-time correlation functions. Temperature effects on transport coefficients (diffusion, conductivity, and viscosity) are investigated. The ratio between the actual conductivity and the estimate from ionic diffusion by the Nernst-Einstein equation indicates that correlated motion of neighboring ions in MOENM2E TFSI is similar to imidazolium ionic liquids. In line with experiment, Walden plot of conductivity and viscosity indicates that simulated MOENM2E TFSI should be classified as a poor ionic liquid.  相似文献   

14.
Intramolecular photoinduced charge separation and recombination within the donor-acceptor molecule 4-(N-pyrrolidino)naphthalene-1,8-imide-pyromellitimide, 5ANI-PI, are studied using ultrafast transient absorption spectroscopy in the room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide [EMIM][Tf2N]. The rate constants of both photoinduced charge separation and charge recombination for 5ANI-PI in [EMIM][Tf2N] are comparable to those observed in pyridine, which has a static dielectric constant similar to that of [EMIM][Tf2N] but a viscosity that is nearly 2 orders of magnitude lower than that of [EMIM][Tf2N]. The electron-transfer dynamics of 5ANI-PI in [EMIM][Tf2N] are compared to those in pyridine as a function of temperature and are discussed in the context of recently reported ionic liquid solvation studies.  相似文献   

15.
Steady-state and time-resolved emission spectroscopy with 25 ps resolution are used to measure equilibrium and dynamic aspects of the solvation of coumarin 153 (C153) in a diverse collection of 21 room-temperature ionic liquids. The ionic liquids studied here include several phosphonium and imidazolium liquids previously reported as well as 12 new ionic liquids that incorporate two homologous series of ammonium and pyrrolidinium cations. Steady-state absorption and emission spectra are used to extract solvation free energies and reorganization energies associated with the S0 <--> S1 transition of C153. These quantities, especially the solvation free energy, vary relatively little in ionic liquids compared to conventional solvents. Some correlation is found between these quantities and the mean separation between ions (or molar volume). Time-resolved anisotropies are used to observe solute rotation. Rotation times measured in ionic liquids correlate with solvent viscosity in much the same way that they do in conventional polar solvents. No special frictional coupling between the C153 and the ionic liquid solvents is indicated by these times. But, in contrast to what is observed in most low-viscosity conventional solvents, rotational correlation functions in ionic liquids are nonexponential. Time-resolved Stokes shift measurements are used to characterize solvation dynamics. The solvation response functions in ionic liquids are also nonexponential and can be reasonably represented by stretched-exponential functions of time. The solvation times observed are correlated with the solvent viscosity, and the much slower solvation in ionic liquids compared to dipolar solvents can be attributed to their much larger viscosities. Solvation times of the majority of ionic liquids studied appear to follow a single correlation with solvent viscosity. Only liquids incorporating the largest phosphonium cation appear to follow a distinctly different correlation.  相似文献   

16.
We present here equilibrium molecular dynamics simulation results for self-diffusion coefficients, shear viscosity, and electrical conductivity in a model ionic liquid (1-ethyl-3-methylimidazolium chloride) at different temperatures. The Green-Kubo relations were employed to evaluate the transport coefficients. When compared with available experimental data, the model underestimates the conductivity and self-diffusion, whereas the viscosity is overpredicted, showing only a semiquantitative agreement with experimental data. These discrepancies are explained on the basis of the rigidity and lack of polarizability of the model. Despite this, the experimental trends with temperature are remarkably well reproduced, with a good agreement on the activation energies when available. No significant deviations from the Nernst-Einstein relation can be assessed on the basis of the statistical uncertainty of the simulations, although the comparison between the electric current and the velocity autocorrelation functions suggests some degree of cross-correlation among ions in a short time scale. The simulations reproduce remarkably well the slope of the Walden plots obtained from experimental data of 1-ethyl-3-methylimidazolium chloride, confirming that temperature does not alter appreciably the extent of ion pairing.  相似文献   

17.
交替马来酸酐共聚物多缩乙二醇酯盐络合物的离子传导性   总被引:4,自引:1,他引:4  
交替马来酸酐共聚物多缩乙二醇酯盐络合物的离子传导性丁黎明,林云青,周子南,王佛松(中国科学院长春应用化学研究所,长春,130022)关键词高分子固体电解质,离子电导率,玻璃化转变温度,离子传输,VTF方程1973年,P.V.Wright等人[1]首次...  相似文献   

18.
While the imidazolium ionic liquids have been studied for some time, little is known about the pyrrolidinium ionic liquids. In this work, steady-state and picosecond time-resolved fluorescence behavior of three electron donor-acceptor molecules, coumarin-153 (C153), 4-aminophthalimide (AP), and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), has been studied in a pyrrolidinium ionic liquid, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, abbreviated here as [bmpy][Tf2N]. The steady-state fluorescence data of the systems suggest that the microenvironment around these probe molecules, which is measured in terms of the solvent polarity parameter, E(T)(30), is similar to that in 1-decanol and that the polarity of this ionic liquid is comparable to that of the imidazolium ionic liquids. All three systems exhibit wavelength-dependent fluorescence decay behavior, and the time-resolved fluorescence spectra show a progressive shift of the fluorescence maximum toward the longer wavelength with time. This behavior is attributed to solvent-mediated relaxation of the fluorescent state of these systems. The dynamics of solvation, which is studied from the time-dependent shift of the fluorescence spectra, suggests that approximately 45% of the relaxation is too rapid to be measured in the present setup having a time resolution of 25 ps. The remaining observable components of the dynamics consist of a short component of 115-440 ps (with smaller amplitude) and a long component of 610-1395 ps (with higher amplitude). The average solvation time is consistent with the viscosity of this ionic liquid. The dynamics of solvation is dependent on the probe molecule, and nearly 2-fold variation of the solvation time depending on the probe molecule could be observed. No correlation of the solvation time with the probe molecule could, however, be observed.  相似文献   

19.
提出了关于离子液体的新理论——离子交换跃迁模型,通过理论推导得出1:1型离子液体的Walden乘积仅取决于离子对和离子簇直径的统计平均值,即离子液体的阴阳离子结构不同,Walden乘积不同。为了验证模型的正确性,本文合成8种N-烷基-吡啶二氰胺类和N-烷基-咪唑丝氨酸类离子液体,利用上述离子液体的电导率和动力粘度的实验值及文献数据,计算了33种离子液体的Walden乘积。通过比较发现,不同离子液体的Walden乘积不同,即对于离子液体来说,Walden乘积是它的特征物理量。  相似文献   

20.
The solvation effect of 1H-1,2,4-triazole towards imidazolium methanesulfonate was studied by blending imidazolium methanesulfonate and 1H-1,2,4-triazole. Upon addition of 1H-1,2,4-triazole, the melting point of imidazolium methanesulfonate was lowered to less than 100 °C while maintaining the high ionic conductivity for a wide composition range of the blend. The ionic conductivity of the blend can be adequately described by using the Vogel-Fulcher-Tamman equation. A vehicle mechanism is postulated to govern the proton conduction for the blend. The contribution of protons to the ionic conductivity was corroborated electrochemically. The blend exhibited electrochemical activities for H(2) oxidation and O(2) reduction at a Pt electrode, as well as a wide electrochemical window. Therefore, suitable blends can possibly serve as electrolytes for polymer electrolyte membrane fuel cells operating under non-humidifying conditions. The solvation effect studied herein suggests a promising approach to a wider application area of protic ionic liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号