首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our knowledge of the mechanisms of radiation damage to DNA induced by secondary electrons is still very limited, mainly due to the large sizes of the system involved and the complexity of the interactions. To reduce the problem to its simplest form, we investigated specific electron interactions with one of the most simple model system of DNA, an oligonucleotide tetrameter compound of the four bases. We report anion desorption yields from a thin solid film of the oligonucleotide GCAT induced by the impact of 3-15 eV electrons. All observed anions (H-, O-, OH-, CN-, and OCN-) are produced by dissociative electron attachment to the molecule, which results in desorption peaks between 6 and 12 eV. Above 14 eV nonresonant dipolar dissociation dominates the desorption yields. By comparing the shapes and relative intensities of the anion yield functions from GCAT physisorbed on a tantalum substrate with those obtained from isolated DNA basic subunits (i.e., bases, deoxyribose, and phosphate groups) from either the gas phase or condensed phase experiments, it is possible to obtain more details on the mechanisms involved in low energy electron damage to DNA, particularly on those producing single strand breaks.  相似文献   

2.
We report that 10-100 eV Ar+ ion irradiation induces severe damage to the biologically relevant sugar molecules D-ribose and 2-deoxy-D-ribose in the condensed phase on a polycrystalline Pt substrate. Ar+ ions with kinetic energies down to 15 eV induce effective decomposition of both sugar molecules, leading to the desorption of abundant cation and anion fragments, including CH3+, C2H3+, C3H3+, H3O+, CHO+, CH3O+, C2H3O+, H-, O-, and OH-, etc. Use of isotopically labelled molecules (5- 13C D-ribose and 1-D D-ribose) reveals the site specificity for some of the fragment origins, and thus the nature of the chemical bond breaking. It is found that all of the chemical bonds in both molecules are vulnerable to ion impact at energies down to 15 eV, particularly both the endo- and exocyclic C-O bonds. In addition to molecular fragmentation, several chemical reactions are also observed. A small amount of O-/O fragments abstract hydrogen to form OH-. It is found that the formation of the H3O+ ion is related to the hydroxyl groups of the sugar molecules, and is associated with additional hydrogen loss from the parent or adjacent molecules via hydrogen abstraction or proton transfer. The formation of several other cation fragments also requires hydrogen abstraction from its parent or an adjacent molecule. These fragmentations and reactions are likely to occur in a real biomedium during ionizing radiation treatment of tumors and thus bear significant radiobiological relevance.  相似文献   

3.
We have investigated experimentally the formation of anions and cations of deoxyribose sugar (C(5)H(10)O(4)) via inelastic electron interaction (attachment/ionization) using a monochromatic electron beam in combination with a quadrupole mass spectrometer. The ion yields were measured as a function of the incident electron energy between about 0 and 20 eV. As in the case of other biomolecules (nucleobases and amino acids), low energy electron attachment leads to destruction of the molecule via dissociative electron attachment reactions. In contrast to the previously investigated biomolecules dehydrogenation is not the predominant reaction channel for deoxyribose; the anion with the highest dissociative electron attachment (DEA) cross section of deoxyribose is formed by the release of neutral particles equal to two water molecules. Moreover, several of the DEA reactions proceed already with "zero energy" incident electrons. In addition, the fragmentation pattern of positively charged ions of deoxyribose also indicates strong decomposition of the molecule by incident electrons. For sugar the relative amount of fragment ions compared to that of the parent cation is about an order of magnitude larger than in the case of nucleobases. We determined an ionization energy value for C(5)H(10)O(4) (+) of 10.51+/-0.11 eV, which is in good agreement with ab initio calculations. For the fragment ion C(5)H(6)O(2) (+) we obtained a threshold energy lower than the ionization energy of the parent molecular ion. All of these results have important bearing for the question of what happens in exposure of living tissue to ionizing radiation. Energy deposition into irradiated cells produces electrons as the dominant secondary species. At an early time after irradiation these electrons exist as ballistic electrons with an initial energy distribution up to several tens of electron volts. It is just this energy regime for which we find in the present study rather characteristic differences in the outcome of electron interaction with the deoxyribose molecule compared to other nucleobases (studied earlier). Therefore, damage induced by these electrons to the DNA or RNA strands may start preferentially at the ribose backbone. In turn, damaged deoxyribose is known as a key intermediate in producing strand breaks, which are the most severe form of lesion in radiation damage to DNA and lead subsequently to cell death.  相似文献   

4.
Highly charged heavy ion traversal of a biological medium can produce energetic secondary fragment ions. These fragment ions can in turn cause collisional and reactive scattering damage to DNA. Here we report hyperthermal (1-100 eV) scattering of one such fragment ion (N(+)) from biologically relevant sugar molecules D-ribose and 2-deoxy-D-ribose condensed on polycrystalline Pt substrate. The results indicate that N(+) ion scattering at kinetic energies down to 10 eV induces effective decomposition of both sugar molecules and leads to the desorption of abundant cation and anion fragments. Use of isotope-labeled molecules (5-(13)C D-ribose and 1-D D-ribose) partly reveals some site specificity of the fragment origin. Several scattering reactions are also observed. Both ionic and neutral nitrogen atoms abstract carbon from the molecules to form CN(-) anion at energies down to approximately 5 eV. N(+) ions also abstract hydrogen from hydroxyl groups of the molecules to form NH(-) and NH(2) (-) anions. A fraction of OO(-) fragments abstract hydrogen to form OH(-). The formation of H(3)O(+) ions also involves hydrogen abstraction as well as intramolecular proton transfer. These findings suggest a variety of severe damaging pathways to DNA molecules which occur on the picosecond time scale following heavy ion irradiation of a cell, and prior to the late diffusion-limited homogeneous chemical processes.  相似文献   

5.
Low-energy secondary electrons are the most abundant radiolysis species which are thought to be able to attach to and damage DNA via formation and decay of localized molecular resonances involving DNA components. In this study, we analyze the consequences of low-energy electron impact on the ability of DNA to hybridize (i.e., to form the duplex). Specifically, single-stranded thymine DNA oligomers tethered to a gold surface are irradiated with very low-energy electrons (E = 3 eV, which is below the 7.5 eV ionization threshold of DNA) and subsequently exposed to a dye-marked complementary strand to quantify by a fluorescence method the electron induced damage. The damage to (dT)25 oligomers is detected at quite low electron doses with only about 300 electrons per oligomer being sufficient to completely preclude its hybridization. In the microarray format, the method can be used for a rapid screening of the sequence dependence of the DNA-electron interaction. We also show for the first time that the DNA reactions at surfaces can be imaged by secondary electron (SE) emission with both high analytical and spatial sensitivity. The SE micrographs indicate that strand breaks induced by the electrons play a significant role in the reaction mechanism.  相似文献   

6.
Resonance electron attachment in a series of brominated phenyl ethers, including decabromodiphenyl ether (DBDE), was investigated in the gas phase by means of electron transmission spectroscopy (ETS) and dissociative electron attachment spectroscopy (DEAS). Attachment of thermal electrons to DBDE leads to various dissociative decay channels of the temporary molecular anion. In contrast to other bromophenyl ethers, the bromide anion is not the most intense negative fragment. The neutral counterparts of the observed [Br(2)](-) and [C(6)Br(4)O](-) anion fragments are ascribed to the closed-shell species octabromodibenzofuran and hexabromobenzene, respectively, although their formation implies complex atomic rearrangements. Density functional theory calculations are employed to evaluate electron affinities, thermodynamic energy thresholds for production of the anion fragments observed in the DEA spectra and the proton affinities of the corresponding neutral radicals. Since DBDE is one of the most widespread organic pollutants, the present gas-phase DEA study can provide indications on the reaction mechanisms which occur in vivo and cause injuries to living cells.  相似文献   

7.
The benzene conversion and phenol selectivity from C6H6/O2/H2O over Ca24Al28O644+·4O-(C12A7-O-) catalyst were investigated using a flow reactor. The benzene conversion increases with the increase of temperature, and the phenol selectivity mainly depends on both reaction temperature and the composition of the mixtures. The changes of the catalyst structure before and after the reactions and the intermediates on the catalyst surface and in the bulk were investigated by XRD, EPR and FT-IR. The catalytic reactions do not cause any damage to the structure of the positively charged lattice framework C12A7-O-, but part of the O- and O2- species in the bulk of C12A7-O- translate to OH- after the reactions. The neutral species and anion intermediate were investigated by Q-MS and TOF-MS respectively. It is suggested that the active O- and OH- species played a key role in the process of phenol formation.  相似文献   

8.
We report on the degradation of gas phase vitamin C (ascorbic acid, AA) induced by low-energy electrons. In the energy range of (0–12) eV, different negatively charged fragments, attributed to the dehydro-ascorbic acid anion ((AA–H)), OH, O and H, are observed. The yield functions indicate that these ions are formed via dissociative electron attachment, DEA. While the formation of (AA–H) is exclusively observed at sub-excitation energies (<1.5 eV), the other fragments arise from resonance features at higher energies. Possible implications of these observations for radiation damage and food treatment by high energy radiation are considered.  相似文献   

9.
We report the mass spectrometric measurement of anions desorbed by 3-24 eV electron impact on thin films of formamide-1-d (DCONH2) and on the self-assembled monolayer (SAM) of two different Lys amide molecules used as a molecular model of the peptide backbone. In the present SAM configuration, the amides are elevated from a gold substrate by hydrocarbon chains to remove the effects of the metal substrate. Electron irradiation produces H- and D- from the formamide-1-d film and H-, CH3-, O-, and OH- from the SAM Lys amides. Below 13 eV, the dependence of the anion yields on the incident electron energy exhibits structures indicative of the dissociative electron attachment process, which is responsible for molecular fragmentation via the initial formation of core-excited anions. Above 13 eV, anion desorption is dominated principally by non-resonant dipolar dissociation. Our results suggest that the sensitivity of the peptide backbone to secondary electrons produced by ionizing radiation depends on the chemical environment (i.e., the amino acids sequence).  相似文献   

10.
Thin molecular films of the short single strand of DNA, GCAT, were bombarded under vacuum by electrons with energies between 4 and 15 eV. Ex vacuo analysis by high-pressure liquid chromatography of the samples exposed to the electron beam revealed the formation of a multitude of products. Among these, 12 fragments of GCAT were identified by comparison with reference compounds and their yields were measured as a function of electron energy. For all energies, scission of the backbone gave nonmodified fragments containing a terminal phosphate, with negligible amounts of fragments without the phosphate group. This indicates that phosphodiester bond cleavage by 4-15 eV electrons involves cleavage of the C-O bond rather than the P-O bond. The yield functions exhibit maxima at 6 and 10-12 eV, which are interpreted as due to the formation of transient anions leading to fragmentation. Below 15 eV, these resonances dominate bond dissociation processes. All four nonmodified bases are released from the tetramer, by cleavage of the N-glycosidic bond, which occurs principally via the formation of core-excited resonances located around 6 and 10 eV. The formation of the other nonmodified products leading to cleavage of the phosphodiester bond is suggested to occur principally via two different mechanisms: (1) the formation of a core-excited resonance on the phosphate unit followed by dissociation of the transient anion and (2) dissociation of the CO bond of the phosphate group formed by resonance electron transfer from the bases. In each case, phosphodiester bond cleavage leads chiefly to the formation of stable phosphate anions and sugar radicals with minimal amounts of alkoxyl anions and phosphoryl radicals.  相似文献   

11.
Negative ion formation in the three perfluoroethers (PFEs) diglyme (C(6)F(14)O(3)), triglyme (C(8)F(18)O(4)) and crownether (C(10)F(20)O(5)) is studied following electron attachment in the range from ~0 to 15?eV. All three compounds show intense low energy resonances at subexcitation energies (<3?eV) decomposing into a variety of negatively charged fragments. These fragment ions are generated via dissociative electron attachment (DEA), partly originating from sequential decompositions on the metastable (μs) time scale as observed from the MIKE (metastable induced kinetic energy) scans. Only in perfluorocrownether a signal due to the non-decomposed parent anion is observed. Additional and comparatively weaker resonances are located in the energy range between ~10 and 17?eV which preferentially decompose into lighter ions. It is suggested that specific features of perfluoropolyethers (PFPEs) relevant in applications, e.g., the strong bonding to surfaces induced by UV radiation of the substrate or degradation of PFPE films in computer hard disc drives can be explained by their pronounced sensitivity towards low energy electrons.  相似文献   

12.
Thin films of the short single DNA strand, GCAT, in which one of the bases has been removed were bombarded with 3 to 15 eV electrons. The yield functions of the H(-), O(-) and OH(-) ions desorbed from these films exhibit a broad peak near 9 eV, which is attributed to dissociative electron attachment to the basic molecules. Whereas removal of any one of the bases considerably decreases N-glycosidic and backbone C-O bond scission, the creation of basic sites does not appreciably modify bond rupture leading to anion electron stimulated desorption. These seemingly contradictory results make it possible to propose a detailed mechanism leading to the transfer of electrons in the range 5-13 eV within DNA.  相似文献   

13.
We report measurements of the formation and desorption of ionic fragments induced by very low-energy (10-200 eV) Ar(+) irradiation of thymine (T) films, deposited on a polycrystalline Pt substrate. A multitude of dissociation channels is observed, among which the major cation species are identified as HNCH(+), HNC(3)H(4) (+), C(3)H(3) (+), OCNH(2) (+), [T-OCN](+), [T-OCNH(2)](+), [T-O](+), and [T+H](+) and the major anions as H(-), O(-), CN(-),and OCN(-). Cation fragment desorption appears at much lower threshold energies (near 15 eV) than anion fragment desorption, where the latter depends strongly on the film thickness. It is proposed that anion fragment formation and desorption results from projectile impact-induced excitation of either (1) a neutral thymine molecule, followed by fragmentation and charge exchange between the energetic neutral fragment and the substrate (or film) and/or (2) a deprotonated monoanionic thymine molecule to a dissociative state, followed by a unimolecular fragmentation of the excited thymine anion. The H(-) and O(-) fragment formations may have a further contribution from dipolar dissociation, e.g., formation of electronically excited neutral thymine, followed by dissociation into O(-)+[T-O](+), due to their reduced sensitivity to the film thickness. Positive-ion fragment desorption exhibits no significant dependence on film thickness before the emergence of surface charging, and originates from a kinetically assisted charge-transfer excitation. The results suggest that the potential energy of the incident ion plays a significant role in lowering the threshold energy of kinetic fragmentation of thymine. Measurements of the time-dependent film degradation yields for 100-eV Ar(+) suggest a quantum efficiency for degradation of about six thymine molecules per incident ion.  相似文献   

14.
Aromatic compounds such as toluene and xylene are major components of many fuels. Accurate kinetic mechanisms for the combustion of toluene are, however, incomplete, as they do not accurately model experimental results such as strain rates and ignition times and consistently underpredict conversion. Current kinetic mechanisms for toluene combustion neglect the reactions of the methylphenyl radicals, and we believe that this is responsible, in part, for the shortcomings of these models. We also demonstrate how methylphenyl radical formation is important in the combustion and pyrolysis of other alkyl-substituted aromatic compounds such as xylene and trimethylbenzene. We have studied the oxidation reactions of the methylphenyl radicals with O2 using computational ab initio and density functional theory methods. A detailed reaction submechanism is presented for the 2-methylphenyl radical + O2 system, with 16 intermediates and products. For each species, enthalpies of formation are calculated using the computational methods G3 and G3B3, with isodesmic work reactions used to minimize computational errors. Transition states are calculated at the G3B3 level, yielding high-pressure limit elementary rate constants as a function of temperature. For the barrierless methylphenyl + O2 and methylphenoxy + O association reactions, rate constants are determined from variational transition state theory. Multichannel, multifrequency quantum Rice-Ramsperger-Kassel (qRRK) theory, with master equation analysis for falloff, provides rate constants as a function of temperature and pressure from 800 to 2400 K and 1 x 10(-4) to 1 x 10(3) atm. Analysis of our results shows that the dominant pathways for reaction of the three isomeric methylphenyl radicals is formation of methyloxepinoxy radicals and subsequent ring opening to methyl-dioxo-hexadienyl radicals. The next most important reaction pathway involves formation of methylphenoxy radicals + O in a chain branching process. At lower temperatures, the formation of stabilized methylphenylperoxy radicals becomes significant. A further important reaction channel is available only to the 2-methylphenyl isomer, where 6-methylene-2,4-cyclohexadiene-1-one (ortho-quinone methide, o-QM) is produced via an intramolecular hydrogen transfer from the methyl group to the peroxy radical in 2-methylphenylperoxy, with subsequent loss of OH. The decomposition of o-QM to benzene + CO reveals a potentially important new pathway for the conversion of toluene to benzene during combustion. A number of the important products of toluene combustion proposed in this study are known to be precursors of polyaromatic hydrocarbons that are involved in soot formation. Reactions leading to the important unsaturated oxygenated intermediates identified in this study, and the further reactions of these intermediates, are not included in current aromatic oxidation mechanisms.  相似文献   

15.
In this work, we present the results from low energy (<12 eV) electron impact on isolated methionine, Met. We show that dissociative electron attachment is the operative mechanism for the sulfur content amino-acid fragmentation. The two most dominant fragments are attributed to the (Met-H)(-) and (C(4)NOH(5))(-) ions that are formed at energy below 2 eV. The formation of the latter anion is accompanied by the loss of neutral counterparts, which are most likely a water molecule and highly toxic methanethiol, CH(3)SH. Further fragments are associated with the damage at the sulfur end of the amino acid, producing the methyl sulfide anion CH(3)S(-) or sulfur containing neutrals. In the context of radiation induced damage to biological material at the nano-scale level, the present interest of methionine arises from the implication of the molecule in biological processes (e.g., S-adenosyl methionine for the stimulation of DNA methyltransferase reactions or protein synthesis).  相似文献   

16.
The interaction of low-energy electrons with multilayers of SiCl(4) adsorbed on Si(111) leads to production and desorption of Cl((2)P(32)), Cl((2)P(12)), Si, and SiCl. Resonant structure in the yield versus incident electron energy (E(i)) between 6 and 12 eV was seen in all neutral channels and assigned to dissociative electron attachment (DEA), unimolecular decay of excited products produced via autodetachment and direct dissociation. These processes yield Cl((2)P(32)) and Cl((2)P(12)) with nonthermal kinetic energies of 425 and 608 meV, respectively. The Cl((2)P(12)) is produced solely at the vacuum surface interface, whereas the formation of Cl((2)P(32)) likely involves subsurface dissociation, off-normal trajectories, and collisions with neighbors. Structure in the Cl((2)P(32)) yield near 14 and 25 eV can originate from excitation of electrons in the 2e, 7t(2) and 6t(2), 6a(1) levels, respectively. Although the 14 eV feature was not present in the Cl((2)P(12)) yield, the broad 25 eV feature, which involves complex Auger filling of holes in the 6t(2) and 6a(1) levels of SiCl(4), is observed. Direct ionization, exciton decay, and DEA from secondary electron scattering all occur at E(i)>14 eV. Si and SiCl were detected via nonresonant ionization of SiCl(x) precursors that are produced via the same states and mechanisms that yield Cl. The Si retains the kinetic energy profile of the desorbed precursors.  相似文献   

17.
Electron attachment to pentafluorobenzonitrile (C(6)F(5)CN) and pentafluoronitrobenzene (C(6)F(5)NO(2)) is studied in the energy range 0-16 eV by means of a crossed electron-molecular beam experiment with mass spectrometric detection of the anions. We find that pentafluoronitrobenzene exclusively generates fragment anions via dissociative electron attachment (DEA), while pentafluorobenzonitrile forms a long lived parent anion within a narrow energy range close to 0 eV and additionally undergoes DEA at higher energies. This is in contrast to the behaviour of the non-fluorinated analogues as in nitrobenzene the non-decomposed anion is formed while in benzonitrile only DEA is observed. The associated reactions involve simple bond cleavages but also complex unimolecular decompositions associated with structural and electronic rearrangement also resulting in the deterioration of the cyclic structure.  相似文献   

18.
Theoretical calculations have been performed to investigate mechanistic features of OH-initiated oxidation reactions of toluene. Aromatic peroxy radicals arising from initial OH and subsequent O(2) additions to the toluene ring are shown to cyclize to form bicyclic radicals rather than undergoing reaction with NO under atmospheric conditions. Isomerization of bicyclic radicals to more stable epoxide radicals possesses significantly higher barriers and, hence, has slower rates than O(2) addition to form bicyclic peroxy radicals. At each OH attachment site, only one isomeric pathway via the bicyclic peroxy radical is accessible to lead to ring cleavage. The study provides thermochemical and kinetic data for quantitative assessment of the photochemical production potential of ozone and formation of toxic products and secondary organic aerosol from toluene oxidation.  相似文献   

19.
DNA damage by attachment of low-energy secondary electrons is a very interesting and important mechanism. Electron capture and subsequent base release are thought to be the elementary steps of this mechanism. The process of the N1-glycosidic bond breaking of anion radicals of pyrimidine nucleosides, specifically the 2'-deoxyribothymidine (dT) and 2'-deoxyribocytidine (dC) anions, has been investigated theoretically at the B3LYP/DZP++ level of theory. The release of nucleobases by the attachment of low-energy electrons depends on the formation of a stable anion radical of the nucleoside. The lower bond-breaking activation energy and the higher vertical electron detachment energy for dT enables the heterolytic cleavage of the N1-glycosidic bond. However, with the higher bond-breaking activation energy and the lower vertical electron detachment energy for dC, the release of cytosine might be impractical when the incident electrons have high kinetic energy. Furthermore, the release of cytosine would have a quantum yield much lower than that of dT when the incident electrons have lower kinetic energy. This study also demonstrates the importance of the proton at O5' of 2'-deoxyribose in the base release process. Extending this investigation from dT to dC advances the insight into the mechanism of the N1-glycosidic bond-breaking process. The information from this extensive investigation should be valuable for further experimental studies of cytosine release in irradiated DNA.  相似文献   

20.
Laser desorption/ionisation and laser ablation of solid selenium trioxide, as well as the gas-phase behaviour of selenium trioxide, were studied. Selenium trioxide undergoes photochemical decomposition and, from the mass spectra obtained by laser desorption/ionisation time-of-flight mass spectrometry (LDI-TOF-MS), the following species were identified: O-, O2-, O3-, SeO-, SeO2-, SeO3-, SeO4-, Se2O7-, Se3O11-, and Se4O14-. Formation of the selenium superoxide SeO4- anion is described in this work for the first time. In addition, low-abundance selenium species such as Se2O8H2-, Se3O11H-, and Se4O15H2- were also detected. The stoichiometry of all ions was confirmed via isotopic pattern modeling and/or post-source decay (PSD) analysis. Photolysis of selenium trioxide leads partly to ozone formation. It was found that the most likely mechanisms of selenium superoxide formation are oxidation of selenium trioxide with ozone and/or reactive oxygen radicals, or photolysis of selenium trioxide tetramer (SeO3)4. Therefore, ab initio calculations were performed to support the mass spectrometric evidence and to suggest probable geometries for selenium superoxide anion SeO4- and diselenium superoxide anion Se2O7-, as well as to provide insight into and/or predict possible formation pathways. It has been found that both cyclic and non-cyclic peroxide structures of SeO4- and Se2O7- ions are possible. In addition, the SeO4 structure was also calculated guided by thermodynamic considerations using Gaussian-2 methodology, and the inferred stability of the SeO4 neutral molecule was supported by ab initio calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号