首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We investigate the linear conductance of a stripe of spin-orbit interaction in a 2D electron gas; that is, a 2D region of length l\ell along the transport direction and infinite in the transverse one in which a spin-orbit interaction of Rashba type is present. Polarization in the contacts is described by means of Zeeman fields. Our model predicts two types of conductance oscillations: Ramsauer oscillations in the minority spin transmission, when both spins can propagate, and Fano oscillations when only one spin propagates. The latter are due to the spin-orbit coupling with quasibound states of the non propagating spin. In the case of polarized contacts in antiparallel configuration Fano-like oscillations of the conductance are still made possible by the spin orbit coupling, even though no spin component is bound by the contacts. To describe these behaviors we propose a simplified model based on an ansatz wave function. In general, we find that the contribution for vanishing transverse momentum dominates and defines the conductance oscillations. Regarding the oscillations with Rashba coupling intensity, our model confirms the spin transistor behavior, but only for high degrees of polarization. Including a position dependent effective mass yields additional oscillations due to the mass jumps at the interfaces.  相似文献   

2.
Because of spin-orbit interaction, an electrical current is accompanied by a spin current resulting in spin accumulation near the sample edges. Due again to spin-orbit interaction this causes a small decrease of the sample resistance. An applied magnetic field will destroy the edge spin polarization leading to a positive magnetoresistance. This effect provides means to study spin accumulation by electrical measurements. The origin and the general properties of the phenomenological equations describing coupling between charge and spin currents are also discussed.  相似文献   

3.
We investigate the theoretically combined effect of spin-orbit interactions and Coulomb interaction on the ground state and transport property of a quantum wire oriented along different crystallographic directions in the (110) plane. We find that the electron’s ground state exhibits phase transition among spin density wave, charge density wave, singlet superconductivity and metamagnetism, which can be controlled by changing the crystallographic orientation, the strengths of the spin-orbit interactions and the Coulomb interaction. The ac conductance exhibits a significant anisotropic behavior and a out-of-plane spin polarization which can be tuned by an in-plane electric field.  相似文献   

4.
Similar to the Landauer electric dipole created around an impurity by the electric current, a spin polarized cloud of electrons can be induced by the intrinsic spin Hall effect near a spin independent elastic scatterer. It is shown that in the ballistic range around the impurity, such a cloud appears in the case of Rashba spin-orbit interaction, even though the bulk spin Hall current is absent.  相似文献   

5.
孙庆丰 《物理》2008,37(08):594-599
近十年来,国内外科学工作者对自旋轨道耦合和自旋流作了很多深入的研究.文章介绍该领域的一些重要进展以及它的发展情况,包括介绍由自旋轨道耦合所引起的内在自旋霍尔效应和持续自旋流、自旋流的产生、自旋流的定义以及自旋流产生电场等.最后也讨论一些有待于解决的课题,以及对该领域的展望.  相似文献   

6.
Interface states at a boundary between regions with different spin-orbit interactions (SOIs) in two-dimensional (2D) electron systems are investigated within the one-band effective mass method with generalized boundary conditions for envelope functions. We have found that the interface states unexpectedly exist even if the effective interface potential equals zero. Depending on the system parameters, the energy of these states can lie in either or both forbidden and conduction bands of bulk states. The interface states have chiral spin texture similar to that of the edge states in 2D topological insulators. However, their energy spectrum is more sensitive to the interfacial potential, the largest effect being produced by the spin-dependent component of the interfacial potential. We have also studied the size quantization of the interface states in a strip of 2D electron gas with SOI and found an unusual (non-monotonic) dependence of the quantization energy on the strip width.  相似文献   

7.
Spin-dependent Floquet scattering theory is developed to investigate the photon-assisted spin-polarized electron transport through a semiconductor heterostructure in the presence of an external electric field. Spin-dependent Fano resonances and spin-polarized electron transport through a laser irradiated time-periodic non-magnetic heterostructure in the presence of Dresselhaus spin-orbit interaction and a gate-controlled Rashba spin-orbit interaction are investigated. The electric field due to laser along with the spin-orbit interactions help to get spin-dependent Fano resonances in the conductance, whereas the external bias can be appropriately adjusted to get a near 80% spin-polarized electron transmission through heterostructures. The resultant nature of the Floquet scattering depends on the relative strength of these two electric fields.  相似文献   

8.
朱国宝 《中国物理 B》2012,(11):429-433
The spin Hall and spin Nernst effects in graphene are studied based on Green’s function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.  相似文献   

9.
We demonstrate that an equilibrium spin current in a 2D electron gas with Rashba spin-orbit interaction (Rashba medium) results in a mechanical torque on a substrate near an edge of the medium. If the substrate is a cantilever, the mechanical torque displaces the free end of the cantilever. The effect can be enhanced and tuned by a magnetic field. Observation of this displacement would be an effective method to prove the existence of equilibrium spin currents. The analysis of edges of the Rashba medium demonstrates the existence of localized edge states. They form a 1D continuum of states. This suggests a new type of quantum wire: spin-orbit quantum wire.  相似文献   

10.
We study a two-dimensional electron system in the presence of spin-orbit interaction. It is shown analytically that the spin-orbit interaction acts as a transversal effective electric field, whose orientation depends on the sign of the z-axis spin projection. This effect does not require any driving electrical field and is inherent to the spin-orbit interactions present in semiconductor materials. Therefore, it should manifest in both closed and open systems. An experiment is proposed to observe the intrinsic spin Hall effect in the far infrared absorption of an asymmetric semiconductor nanostructure.  相似文献   

11.
Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.  相似文献   

12.
The spin Hall effect in a two-dimensional electron system on honeycomb lattice with both intrinsic and Rashba spin-orbit couplings is studied numerically. Integer quantized spin Hall conductance is obtained at the zero Rashba coupling limit when electron Fermi energy lies in the energy gap created by the intrinsic spin-orbit coupling, in agreement with recent theoretical prediction. While nonzero Rashba coupling destroys electron spin conservation, the spin Hall conductance is found to remain near the quantized value, being insensitive to disorder scattering, until the energy gap collapses with increasing the Rashba coupling. We further show that the charge transport through counterpropagating spin-polarized edge channels is well quantized, which is associated with a topological invariant of the system.  相似文献   

13.
Based on the nonequilibrium Green' function method, the spin-dependent Fano effect through parallel-coupled double quantum dots has been investigated by taking account of both Rashba spin-orbit interaction and intradot Coulomb interaction. It is shown that the quantum interference through the bonding, antibonding states and through their Coulomb blockade counterparts may result in two Breit-Wigner resonances and two Fano resonances in the conductance spectra. Moreover, the Fano lineshape of the two spin components can be modulated by Rashba spin-orbit interaction when the magnetic flux is switched on.  相似文献   

14.
We devise an approach to measure the polarization of nuclear spins via conductance measurements. Specifically, we study the combined effect of external magnetic field, nuclear spin polarization, and Rashba spin-orbit interaction on the conductance of a quantum wire. Nonequilibrium nuclear spin polarization affects the electron energy spectrum making it time dependent. Changes in the extremal points of the spectrum result in time dependence of the conductance. The conductance oscillation pattern can be used to obtain information about the amplitude of the nuclear spin polarization and extract the characteristic time scales of the nuclear spin subsystem.  相似文献   

15.
The transverse redistribution of carriers that occurs in a 2D system under the effect of a tangential electric field and a magnetic field possessing a tangential component is studied. It is shown that the redistribution of carriers gives rise to a Hall voltage across isolated electrodes positioned above and under the quantum film. This voltage is determined by the 2D conductivity tensor and the transverse static electric polarizability of the 2D layer. The additional contribution that appears in the vertical Hall voltage because of the electron spin orientation induced by magnetic field and the spin-orbit interaction of electrons with the quantum well potential is determined.  相似文献   

16.
17.
We construct a unified semiclassical theory of charge and spin transport in chaotic ballistic and disordered diffusive mesoscopic systems with spin-orbit interaction. Neglecting dynamic effects of spin-orbit interaction, we reproduce the random matrix theory results that the spin conductance fluctuates universally around zero average. Incorporating these effects into the theory, we show that geometric correlations generate finite average spin conductances, but that they do not affect the charge conductance to leading order. The theory, which is confirmed by numerical transport calculations, allows us to investigate the entire range from the weak to the previously unexplored strong spin-orbit regime, where the spin rotation time is shorter than the momentum relaxation time.  相似文献   

18.
We propose a new scheme of spin filtering employing ballistic nanojunctions patterned in a two dimensional electron gas (2DEG). Our proposal is essentially based on the spin-orbit (SO) interaction generated by a lateral confining potential (β-SO coupling ). We demonstrate that the flow of a longitudinal unpolarized current through a ballistic T and X junction with this spin-orbit coupling will induce a spin accumulation which has opposite signs for the two lateral probes and is, therefore, the principal observable signature of the spin Hall effect in these devices.  相似文献   

19.
The spin Hall effect depends crucially on the intrinsic spin-orbit coupling of the energy band. Because of the smaller spin-orbit coupling in silicon, the spin Hall effect is expected to be much reduced. We show that an electric field in p-doped silicon can induce a dissipationless orbital current in a fashion reminiscent of the spin Hall effect. The vertex correction from impurity scattering vanishes and the effect is robust against disorder. The orbital Hall effect leads to accumulation of local orbital momentum at the edge of the sample, and can be detected by the Kerr effect.  相似文献   

20.
The spin Hall transport properties in a two-dimensional electron system with both Rashba spin-orbit coupling (SOC) and magnetic impurities are investigated. Electrons are scattered by impurities through an exchange interaction that leads to spin flip-flop processes and so changes the spin Hall effect induced by the SOC. The spin Hall conductance is calculated in a 4-terminal system using the Landauer-Buttiker formula and Green function approach. In comparison with the simulation results on nonmagnetic impurities doping systems, our results reveal that the spin Hall conductance is still nonzero in a system with a large density of magnetic impurities and a finite intensity of the exchange interaction between the electrons and impurities, and its sign may be altered when the doping density and interaction strength are large enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号