首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
We study the effects of RuO6 rotation on Ru 4d band structures in metallic Ca2-xSrxRuO4 (0.5 < or = x < or = 2) by first-principles electronic structure calculations. We show that the RuO6 rotation leads to the strong hybridization between dxy and dx2-y2 bands, resulting in orbital-dependent changes in the band structure. The dxy band near the Fermi level is significantly modified and thereby a severely reconstructed Fermi surface with nested sections appears at x=0.5. In contrast, the dyz and dzx bands are found to be insensitive to the rotational distortions induced by the Ca substitution. Our results imply that the progressive changes in the magnetic, optical, and thermal properties of Ca2-xSrxRuO4 are associated with the dxy band.  相似文献   

2.
The cobalt oxide superconductor Na(x)CoO(2) x yH(2)O is studied by angle-resolved photoemission spectroscopy. We report the Fermi surface (FS) topology and electronic structure near the Fermi level (E(F)) in the normal state of Na(x)CoO(2) x yH(2)O. Our result indicates the presence of the hexagonal FS centered at the Gamma point, while the small pocket FSs along Gamma-K direction are absent, similar to Na(x)CoO(2). The top of the e(g)(') band, which is expected in band calculations to form the small pocket FSs, extends to within approximately 30 meV below E(F), closer to E(F) than in Na(x)CoO(2). We discuss its possible role in superconductivity, comparing with other experimental and theoretical results.  相似文献   

3.
Layered cobaltates embody novel realizations of correlated matter on a spin-1/2 triangular lattice. We report a high-resolution systematic photoemission study of the insulating cobaltates. The observation of a single-particle gap opening and band folding provides direct evidence of anisotropic particle-hole instability on the Fermi surface due to its unique topology. Overlap of the measured Fermi surface is observed with the square root 3xsquare root 3 charge-order Brillouin zone near x=1/3 but not at x=1/2 where the insulating transition is actually observed. Unlike conventional density waves, charge stripes, or band insulators, the onset of the gap depends on the quasiparticle's quantum coherence which is found to occur well below the disorder-order symmetry breaking temperature of the crystal (the first known example of its kind).  相似文献   

4.
We analyze the origin of the three-dimensional (3D) magnetism observed in nonhydrated Na-rich Na(x)CoO2 within an itinerant spin picture using a 3D Hubbard model. The origin is identified as the 3D nesting between the inner and outer portions of the Fermi surface, which arise due to the local minimum structure of the a(1g) band at the Gamma-A line. The calculated spin wave dispersion strikingly resembles the neutron scattering result. We argue that this 3D magnetism and the spin fluctuations responsible for superconductivity in the hydrated systems share essentially the same origin.  相似文献   

5.
The electronic structure of NaxCoO2 revealed by recent photoemission experiments shows important deviations from band theory predictions. The six small Fermi surface pockets predicted by local-density approximation calculations have not been observed as the associated e'(g) band fails to cross the Fermi level for a wide range of sodium doping concentration x. In addition, significant bandwidth renormalizations of the t(2g) complex have been observed. We show that these discrepancies are due to strong electronic correlations by studying the multiorbital Hubbard model in the Hartree-Fock and strong-coupling Gutzwiller approximation. The quasiparticle dispersion and the Fermi surface topology obtained in the presence of strong local Coulomb repulsion are in good agreement with experiments.  相似文献   

6.
In this paper a mean-field theory for the spin-liquid paramagnetic non-superconducting phase of the p- and n-type high-Tc cuprates is developed. This theory applied to the effective t-t'-t′′-J* model with the ab initio calculated parameters and with the three-site correlated hoppings. The static spin-spin and kinematic correlation functions beyond Hubbard-I approximation are calculated self-consistently. The evolution of the Fermi surface and band dispersion is obtained for the wide range of doping concentrations x. For p-type systems the three different types of behavior are found and the transitions between these types are accompanied by the changes in the Fermi surface topology. Thus a quantum phase transitions take place at x = 0.15 and at x = 0.23.Due to the different Fermi surface topology we found for n-type cuprates only one quantum critical concentration, x = 0.2. The calculated doping dependence of the nodal Fermi velocity and the effective mass are in good agreement with the experimental data.  相似文献   

7.
The nature of electronic states due to strong correlation and geometric frustration on the triangular lattice is investigated in connection to the unconventional insulating state of NaxCoO2 at x=0.5. We study an extended Hubbard model using a spatially unrestricted Gutzwiller approximation. We find a new class of charge and spin ordered states at x=1/3 and x=0.5 where antiferromagnetic (AFM) frustration is alleviated via weak charge inhomogeneity. At x=0.5, we show that the square root of 3a x 2a off-plane Na dopant order induces weak square root of 3a x 1a charge order in the Co layer. The symmetry breaking enables successive square root of 3a x 1a AFM and 2a x 2a charge- or spin-ordering transitions at low temperatures. The Fermi surface is truncated by the 2a x 2a hexagonal zone boundary into small electron and hole pockets. We study the phase structure and compare to recent experiments.  相似文献   

8.
A precursor effect on the Fermi surface in the two-dimensional Hubbard model at finite temperatures near the antiferromagnetic instability is studied using three different itinerant approaches: the second order perturbation theory, the paramagnon theory (PT), and the two-particle self-consistent (TPSC) approach. In general, at finite temperature, the Fermi surface of the interacting electron systems is not sharply defined due to the broadening effects of the self-energy. In order to take account of those effects we consider the single-particle spectral function A(, 0) at the Fermi level, to describe the counterpart of the Fermi surface at T = 0. We find that the Fermi surface is destroyed close to the pseudogap regime due to the spin-fluctuation effects in both PT and TPSC approaches. Moreover, the top of the effective valence band is located around = (π/2,π/2) in agreement with earlier investigations on the single-hole motion in the antiferromagnetic background. A crossover behavior from the Fermi-liquid regime to the pseudogap regime is observed in the electron concentration dependence of the spectral function and the self-energy. Received 8 September 2000 and Received in final form 20 December 2000  相似文献   

9.
Doping evolution of the Fermi surface topology of Na(x)CoO(2) is studied systematically. Both local density approximation (LDA) and local spin density approximation (LSDA) predict a large Fermi surface as well as small hole pockets for doping levels x approximately 0.5. In contrast, the hole pockets are completely absent for all doping levels within LSDA+U. More importantly, we find no violation of Luttinger's rule in this system. The measured Fermi surface of Na(0.7)CoO(2) can be explained by its half-metallic behavior and agrees with our LSDA+U calculations.  相似文献   

10.
The experimental band structure of Mo(112) and the effects by temperature and adsorbate are presented. A surface resonance, identified as crossing the Fermi level at about 1/3 from to of surface Brillouin zone, was observed to be very sensitive to both contamination and temperature. We find evidence of adsorbate and temperature induced reconstruction of the Mo(112) surface. Examination of low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) data provides evidence for an adsorbate induced reconstruction of the Mo(112) surface with periodicities consistent with the Fermi level crossing of the surface resonance. The reconstruction is found to occur at coverages as low as 0.03 Langmuirs of oxygen or carbon. The reconstruction and/or adsorbate affects the density of states and bands near the Fermi level of a 1 symmetry. Received 3 March 1999 and Received in final form 1 October 1999  相似文献   

11.
To investigate the relationship between the electronic structure and the power factor of Na_xCoO_2(x=0.3,0.5 and 1.0),the first-principles calculation is conducted by using density functional theory and the semi-classical Boltzmann theory.Our results suggest that with the decreasing Na content,a transition from semiconductor to semimetal is observed.Na_(0.3)CoO_2 possesses a higher electrical conductivity at 1000 K due to its increased density of states near the Fermi energy level.However,an optimal Seebeck coefficient at 1000 K is obtained in Na_(0.5)CoO_2 because of its broadened band gap near the Fermi energy level.Consequently,a maximum power factor is realized in Na_(0.5)CoO_2.Thus our work provides a complete understanding of the relationship between the electronic structure and the thermoelectric power factor of Na_xCoO_2.  相似文献   

12.
We have produced a quantum degenerate 6Li Fermi gas with up to 7 x 10(7) atoms, an improvement by a factor of 50 over all previous experiments with degenerate Fermi gases. This was achieved by sympathetic cooling with bosonic 23Na in the F=2, upper hyperfine ground state. We have also achieved Bose-Einstein condensation of F=2 sodium atoms by direct evaporation.  相似文献   

13.
Qualitative changes are observed in the character of the surface electronic structure accompanying the adsorption of potassium on a Si(111) 7×7 surface. The metallic conductivity of the Si(111)7×7 surface is destroyed at the very early stages of adsorption. A new band induced by the adsorption of potassium is observed below the Fermi level. It is found that the K/Si(111)7×7 interface is semiconducting right up to saturating coverage. A surface transition from an insulating into a metallic state, accompanied by pinning of the Fermi level, is observed in the region of saturating coverage. Metallic conductivity arises in the adsorbed potassium layer as a result of the development of an induced surface band at the Fermi level. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 1, 27–30 (10 July 1997)  相似文献   

14.
Photoemission spectroscopy of Bi(111) reveals a small hexagonal two-dimensional Fermi surface (FS) associated with an electron band centered in the surface Brillouin zone. Along the hexagon the Fermi momentum k(F) ranges from 0.053 to 0.061 A(-1). Temperature dependent valence band spectra show an anisotropic energy gap Delta near the Fermi level. We find a transition temperature of about 75 K. At 11 K, the gap is Delta=4 meV at the corner and Delta=7.5 meV at the side of the hexagon. Arguments based on susceptibility chi(--> q) calculations of a hexagonal FS are used to discuss an incommensurate charge-density-wave (CDW) formation associated with a q(CDW)=0.106 A(-1).  相似文献   

15.
We present the first angle-resolved photoemission study of Na0.7CoO2, the host material of the superconducting NaxCoO2.nH(2)O series. Our results show a hole-type Fermi surface, a strongly renormalized quasiparticle band, a small Fermi velocity, and a large Hubbard U. The quasiparticle band crosses the Fermi level from M toward Gamma suggesting a negative sign of effective single-particle hopping t(eff) (about 10 meV) which is on the order of magnetic exchange coupling J in this system. Quasiparticles are well defined only in the T-linear resistivity (non-Fermi-liquid) regime. Unusually small single-particle hopping and unconventional quasiparticle dynamics may have implications for understanding the phase of matter realized in this new class of a strongly interacting quantum system.  相似文献   

16.
A strong, gold-induced surface state is found on single-domain Si(111)-(5x2)-Au at low temperatures. Its band dispersion is one dimensional near the Fermi level E(F) and gradually becomes two dimensional towards the bottom of the band, thus providing a model for a continuous transition in dimensionality. A Peierls-like gap is observed in the one-dimensional portion of the band near E(F).  相似文献   

17.
Both Photoemission Yield Spectroscopy (PYS) and Auger Electron Spectroscopy (AES) have been used in the study of the electronic properties of the clean GaAs(100) surface prepared by IBA procedure and subsequently exposed to oxygen. For the clean GaAs(100)c(8 × 2) surface, the values of the work function and the absolute band bending were 4.20 ± 0.02 eV and −0.23 ± 0.06 eV, respectively, which confirms the pinning of the Fermi level EF, and two filled electronic surface state bands localized in the band gap below the Fermi level were observed. After exposition of this surface to 103 L of oxygen, the electronic surface state band localized just below the Fermi level EF disappeared, and the work function and the absolute band bending increased by only 0.12eV, whereas for the higher oxygen exposures of 104L and 105L, only small increases in the values of the work function and the absolute bending by 0.04 eV and 0.03 eV, respectively, were observed.  相似文献   

18.
We presented the recent Hall effect data for a number of carriers in La(2-x)Sr(x)CuO4 as the sum of two components: the temperature independent term n0(x), which is due to external doping, and the thermally activated contribution. Their balance determines the crossover temperature T*(x) from the marginal Fermi liquid to pseudogap regime. The activation energy Delta(x) for thermally excited carriers equals the energy between the Fermi surface "arc" and the band bottom, as seen in angle-resolved photoemission spectroscopy experiments. Other implications for the (T, x)-phase diagram of cuprates are also discussed.  相似文献   

19.
Recent experiments on iron pnictides have uncovered a large in-plane resistivity anisotropy with a surprising result: The system conducts better in the antiferromagnetic x direction than in the ferromagnetic y direction. We address this problem by calculating the ratio of the Drude weight along the x and y directions, D(x)/D(y), for the mean-field Q=(π,0) magnetic phase diagram of a five-band model for the undoped pnictides. We find that D(x)/D(y) ranges between 0.2相似文献   

20.
Ultraviolet photoemission spectroscopy with hv < 12 eV has been used to study O2, CO, and H2 adsorption on the cleaved GaAs(110) face. It was found that O2 exposures above 105 L(1LM = 10?6 Torr sec) were required to produce changes in the energy distribution curves. At O2 exposures of 106 L on p-type and 108 L on n-type an oxide peak is observed in the EDC's located 4 eV below the valence band maximum. On p-type GaAs, O2 exposures cause the Fermi level at the surface to move up to a point 0.5 eV above the valence band maximum, while on n-type GaAs O2 exposures do not remove the Fermi level pinning caused by empty surface states on the clean GaAs. CO was found to stick to GaAs, but to desorb over a period of hours, and not to change the surface Fermi level position. H2 did not affect the EDC's, but atomic H lowered the electron affinity and raised the surface position of the Fermi level on p-type GaAs. A correlation is found in which gases which stick to the GaAs cause an upward movement of the Fermi level at the surface on p-type GaAs, while gases which stick only temporarily do not change the surface position of the Fermi level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号