首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spontaneous transition phenomena between two states of a plasma with an internal transport barrier (ITB) is observed in the steady-state phase of the magnetic shear in the negative magnetic shear plasma in the JT-60U tokamak. These two ITB states are characterized by different profiles of the second radial derivative of the ion temperature inside the ITB region (one has a weak concave shape and the other has a strong convex shape) and by different degrees of sharpness of the interfaces between the L mode and the ITB region, which is determined by the turbulence penetration into the ITB region.  相似文献   

2.
The results of local measurements of RF discharge plasma parameters in the process of internal transport barriers (ITB) formation in the vicinity of rational magnetic surfaces in the Uragan-3M torsatron are presented. The following phenomena were observed in the process of ITB formation: widening of the radial density distribution, formation of plateaus on radial density and electron temperature distributions, formation of regions with high shear of poloidal plasma rotation velocity and radial electric field in the vicinity of stochastic layers of magnetic field lines, decrease of density fluctuations and their radial correlation length, decorrelation of density fluctuations, and increase of the bootstrap current.After the ITB formation, the transition to the improved plasma confinement regime takes place. The transition moves to the beginning of the discharge with the increase of heating power. The possible mechanism of ITB formation near rational surfaces is discussed.  相似文献   

3.
Correlation of density turbulence suppression and reduced plasma transport is observed in the internal transport barrier (ITB) region of JET tokamak discharges with optimized magnetic shear. The suppression occurs in two stages. First, low frequency turbulence and ion transport are reduced across the plasma core by a toroidal velocity shear generated by intense auxiliary heating. Then with the ITB formation, high frequency turbulence and electron transport are reduced locally within the steep pressure gradient region of the ITB.  相似文献   

4.
With consideration of the effects of the atomic process and the sight line direction on the charge exchange re-combination spectroscopy (CXRS), a code used to modify the poloidal CXRS measurement on Tokamak-60 Upgrade (JT-60U) in Japan Atomic Energy Research Institute is developed, offering an effective tool to modify the measurement and analyse experimental results further. The results show that the poloidal velocity of ion is overestimated but the ion temperature is underestimated by the poloidal CXRS measurement, and they also indicate that the effect of observation angle on rotation velocity is a dominant one in a core region (r/a 〈 0.65), whereas in an edge region where the sight line is nearly normal to the neutral beam, the observation angle effect is very small. The difference between the modified velocity and the neoclassical velocity is not larger than the error in measurement. The difference inside the internal transport barrier (ITB) region is 2-3 times larger than that outside the ITB region, and it increases when the effect of excited components in neutral beam is taken into account. The radial electric field profile is affected greatly by the poloidal rotation term, which possibly indicates the correlation between the poloidal rotation and the transport barrier formation.[第一段]  相似文献   

5.
石秉仁  曲文孝 《中国物理》2006,15(7):1532-1538
A ballooning mode equation for tokamak plasma, with the toroidicity and the Shafranov shift effects included, is derived for a shift circular flux tokamak configuration. Using this equation, the stability of the plasma configuration with an internal transport barrier (ITB) against the high n (the toroidal mode number) ideal magnetohydrodynamic (MHD) ballooning mode is analysed. It is shown that both the toroidicity and the Shaftanov shift effects are stabilizing. In the ITB region, these effects give rise to a low shear stable channel between the first and the second stability regions. Out of the ITB region towards the plasma edge, the stabilizing effect of the Shaftanov shift causes the unstable zone to be significantly narrowed.  相似文献   

6.
为了研究EAST上H模等离子体中离子内部输运垒(ITB)的特性,利用电荷交换复合光谱诊断,分析了离子ITB形成和稳态阶段等离子体离子温度和环向旋转速度的时空演化。结果表明,在离子ITB形成和稳定期间,ITB肩部附近(R=1.928m)的离子温度梯度增加时,ITB区域(R=1.984m)的离子温度梯度会有所降低,反之亦然。考虑到在离子ITB形成前,芯部区域不同半径位置的离子温度梯度同时增加或减小,得到了在R=1.984m处判断离子ITB是否形成的归一化离子温度梯度的阈值。  相似文献   

7.
By incorporating parametric instabilities of lower hybrid (LH) waves into a ray-tracing Fokker-Planck code, accurate simulations of the LH deposition profiles are provided, which are useful for interpreting the long-lasting internal transport barriers (ITBs) sustained by lower hybrid current drive (LHCD) on JET (Joint European Torus). Utilizing the new model, the simulation of the q-profile evolution results in agreement with that provided by the motional Stark effect reconstructed equilibria. Low magnetic shear (s approximately equal to 0) is produced by LHCD in a layer close to the ITB radial foot.  相似文献   

8.
Evolution of the lower-hybrid(LH)-driven current profile was measured during the formation of an internal transport barrier (ITB) in a reversed magnetic shear discharge. As the ITB developed, the initially centrally peaked LH-driven current profile gradually turned hollow and was sometimes accompanied by an off-axis peak in the electron temperature profile. These observations indicate the concentration of LH power deposition to the ITB for this case as a result of nonlinear coupling between the LH waves and the target plasma.  相似文献   

9.
The first electron temperature modulation experiments in plasmas characterized by strong and long-lasting electron and ion internal transport barriers (ITB) have been performed in JET using ion cyclotron resonance heating in mode conversion scheme. The ITB is shown to be a well localized narrow layer with low heat diffusivity, characterized by subcritical transport and loss of stiffness. In addition, results from cold pulse propagation experiments suggest a second order transition process for ITB formation.  相似文献   

10.
Associated with the transition from ion root to electron root, an electron internal transport barrier (ITB) appears in the large helical device, when the heating power of electron cyclotron resonance heating exceeds the threshold power. The incremental thermal diffusivity of electron heat transport chi(inc)(e) in the ITB plasma is much lower than that in the plasma with the heating power below the threshold, and the thermal diffusivity chi(e) decreases with increasing of heating power [dchi(e)/d(P/n(e))<0] in helical ITB plasmas.  相似文献   

11.
Joint European Torus discharges which demonstrate the critical role the safety factor profile, q, can play in the formation of internal transport barriers (ITB) are examined. In these discharges, the target parameters, including the E x B flows, were kept virtually the same, except for the q profile. In a discharge with a nonmonotonic q, an ITB was triggered whereas a discharge with monotone q made no such transition. Thus, there is strong evidence that the q profile was the critical factor for the triggering of an ITB. Possible interpretations of this finding are discussed.  相似文献   

12.
We present the measurements of plasma characteristics in the scrape-off layer (SOL) of the Tore Supra tokamak performed by means of reciprocating Langmuir probe. The probe is inserted into the machine from top. As the radial distance from last closed flux surface (LCFS) increases, ion saturation current exhibits stronger bursty character and its probability density function becomes increasingly skewed towards positive values. At the same time, burst duration and inter-burst time increase dramatically. We explain this phenomenon by radial propagation and dynamics of the ensemble of coherent turbulent structures of different size. The results of two-dimensional fluid modelling based of flux-driven interchange instability mechanism are in excellent agreement with experimental results. We obtained clear experimental evidence that most of the coherent structures are formed in poloidally localized region of the SOL around the outboard midplane. If the probe is magnetically connected to this region, the SOL is very wide and we detect bursty behaviour in the far SOL. On the other hand, if the probe is not magnetically connected to the outboard midplane region (magnetic field lines are intercepted by the outboard limiter), then the SOL is very thin and bursty behaviour is much less prominent. Detection of bursty behaviour in the far SOL is correlated with existence of wide SOL pointing on important role of bursty transport by means of coherent turbulent structures in establishing the width of the SOL in tokamaks. The measurements of parallel flow in the SOL shows that plasma particle radial flux coming from confinement region to the SOL is mostly poloidally localized around the outboard midplane. Our estimations show that more than 80% of plasma particle radial flux is coming from confinement region to the SOL in poloidally localized region — approximately ±15° — around the outboard midplane. Presented at the Workshop “Electric Fields, Structures and Relaxation in Edge Plasmas”, Roma, Italy, June 26–27, 2006.  相似文献   

13.
14.
Experiments at the FT-2 tokamak had demonstrated effective plasma LH heating, which was accounted for by both direct absorption of RF power and plasma transport suppression. The improved core confinement accompanied by Internal Transport Barrier (ITB) formation was observed. The RF pulse switch off is followed by triggering of LH transition and the External Transport Barrier (ETB) formation near the last closed flux surface. The present paper is devoted to a much more detailed study of the radial electric fieldE r behaviour in the region of ITB and ETB and its influence on the tokamak microturbulence in these regions. The new experimental data were obtained by spatial spectroscopic technique using additional pulse helium puffing in hydrogen plasma. Simultaneously microscale plasma oscillations in the frequency band (0.01–2) MHz are observed with local enhanced microwave scattering diagnostics and by x-mode fluctuation reflectometry. Experiments demonstrate that the improved confinement is associated with the modification of microturbulence by the shear of theE×B poloidal velocity. This conclusion is also confirmed by the data obtained by Langmuir probes in the edge plasma. Presented at 5th Workshop “Role of Electric Fields in Plasma Confinement and Exhaust”, Montreux, Switzerland, June 23–24, 2002”. The study was performed with the support of the Ministry of General and Professional Education of RF (TOO-7.4-2797), INTAS-01-2056 and the RFBR Grants 00-02-16927, 01-02-17926 and 02-02-17684.  相似文献   

15.
16.
A new approach for turbulent fluxes and E×B measurements in the bulk plasma is proposed. It is based in the measurement of fluctuations in the phase velocity of fluctuations. The structure of turbulence has been investigated in the JET plasma boundary region with a fast reciprocating Langmuir probe system. Fluctuations in the radial and poloidal phase velocity have been computed from floating potential and ion saturation current measurements. The correlation between density fluctuations and fluctuations in the radial velocity of fluctuations signals show a good agreement with the turbulent transport computed from the correlation between density and poloidal electric field fluctuations. These results suggest that turbulent transport might be computed in the plasma core from measurement of density fluctuations. E×B sheared flows, both constant and varying in time, are close to the critical value to trigger the transition to improve confinement regimes below the power threshold to trigger the formation of transport barriers.  相似文献   

17.
Neoclassical transport theory for a tokamak in the presence of a large radial electric field with shear is developed using Hamiltonian formalism. Diffusion coefficients are derived in both the plateau and banana regimes where the squeezing factor in coefficients can greatly affect diffusion at the plasma edge. Rotation speeds are calculated in the scrape-off region. They are in good agreement with the measurements on the TdeV tokamak.  相似文献   

18.
EFFECTOFRADIALELECTRICALFIELDONNEOCLASSICALTRANSPORTINTOKAMAKSEFFECTOFRADIALELECTRICALFIELDONNEOCLASSICALTRANSPORTINTOKAMAKS¥...  相似文献   

19.
A quasisteady reversed shear plasma with a large bootstrap current fraction ( approximately 80%) has been obtained for the first time in the JT-60U tokamak. The shrinkage of reversed shear region was suppressed by the bootstrap current peaked at the internal transport barrier (ITB) layer and the ITBs at a large radius were sustained, which, by combination with an H-mode edge pedestal, resulted in a high confinement or 2.2 times the H-mode scaling for 6 times energy confinement time or 2.7 s. Furthermore, a full noninductive current drive was obtained by the bootstrap current and the beam driven current.  相似文献   

20.
A common explanation is given for ion transport and strong broadband density fluctuations in tokamaks as a result of large anomalous electron transport near dominant magnetic surfaces (resp. in small magnetic islands). The main mechanism is local density flattening connected with an anomalous electron transport induced instationary radial electric field, which forces the ions via polarization drift to follow the electrons. For the density flattening process an exact solution of the time-dependent diffusion equation for a linear initial profile over the island width is used. From this we also derive an expression for a temporal growing radial electric field. This positive field reaches its maximum at the density plateau. Strong viscous diffusion or instability-induced transport between high and low electric field regions may now reverse the density flattening. Therefore relaxation oscillations result which may also explain the observed strong density and potential fluctuations in tokamaks. Several details of recent measurements of impurity ion behaviour and density fluctuations in tokamaks may be better explained with the theory given here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号