首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. [Part B]》1987,195(3):349-356
We show that cosmological solutions in Kaluza-Klein theory in more than five dimensions are unstable. This is due to the fact that the extra cosmic scale factors appearing in the metric ansatz act as scalar matter fields in the physical four-dimensional spacetime. These fields have physically unacceptable features: their kinetic energy can be negative and the energy spectrum is unbounded from below. To remove the defects a reinterpretation of the cosmological metric ansatz is necessary.  相似文献   

2.
We investigate the energy-momentum and spin field equations of gravity theory on a Riemann-Cartan space-time (including metric and torsion,U 4-manifold). The structure of the rather complicated nonlinear differential equations of second order is made considerably easier to survey by decomposing curvature into its self and anti-self double dual parts. This leads to an obvious ansatz for the self double dual curvature, whereby the field equations are reduced to Einstein's equations with cosmological term. To solve the double dual ansatz, we choose proper variables adopted to its double duality, and perform a (3+1)-decomposition of exterior calculus. We examine these equations further on a Kerr background with cosmological constant for the Riemannian geometry.  相似文献   

3.
Superfluid condensation of neutrinos of cosmological origin at a low enough temperature can provide simple and elegant solution to the problems of neutrino oscillations and the accelerated expansion of the universe. It would give rise to a late time cosmological constant of small magnitude and also generate tiny masses for the neutrinos as observed from their flavor oscillations. We show that carefully prepared beta decay experiments in the laboratory would carry signatures of such a condensation, and thus, it would be possible to either establish or rule out neutrino condensation of cosmological scale in laboratory experiments.  相似文献   

4.
In this paper we continue the program pioneered by D’Hoker and Phong, and recently advanced by Cacciatori, Dalla Piazza, and van Geemen, of finding the chiral superstring measure by constructing modular forms satisfying certain factorization constraints. We give new expressions for their proposed ansätze in genera 2 and 3, respectively, which admit a straightforward generalization. We then propose an ansatz in genus 4 and verify that it satisfies the factorization constraints and gives a vanishing cosmological constant. We further conjecture a possible formula for the superstring amplitudes in any genus, subject to the condition that certain modular forms admit holomorphic roots.  相似文献   

5.
In this paper a theory of models of the universe is proposed. We refer to such models ascosmological models, where a cosmological model is defined as an Einstein-inextendible Einstein spacetime. A cosmological model isabsolute if it is a Lorentz-inextendible Einstein spacetime,predictive if it is globally hyperbolic, andnon-predictive if it is nonglobally-hyperbolic. We discuss several features of these models in the study of cosmology. As an example, any compact Einstein spacetime is always a non-predictive absolute cosmological model, whereas a noncompact complete Einstein spacetime is an absolute cosmological model which may be either predictive or non-predictive. We discuss the important role played by maximal Einstein spacetimes. In particular, we examine the possible proper Lorentz-extensions of such spacetimes, and show that a spatially compact maximal Einstein spacetime is exclusively either a predictive cosmological model or a proper sub-spacetime of a non-predictive cosmological model. Provided that the Strong Cosmic Censorship conjecture is true, a generic spatially compact maximal Einstein spacetime must be a predictive cosmological model. It isconjectured that the Strong Cosmic Censorship conjecture isnot true, and converting a vice to a virtue it is argued that the failure of the Strong Cosmic Censorship conjecture would point to what may be general relativity's greatest prediction of all, namely,that general relativity predicts that general relativity cannot predict the entire history of the universe.  相似文献   

6.
We consider the maximal subgroups of the conformai group (which have in common as a subgroup the group of pure spatial rotations) as isometry groups of conformally flat spacetimes. We identify the corresponding cosmological solutions of Einstein's field equations. For each of them, we investigate the possibility that it could be generated by anSU (2) Yang-Mills field built, via the Corrigan-Fairlie-'t Hooft-Wilczek ansatz, from a scalar field identical with the square root of the conformal factor defining the space-time metric tensor. In particular, the Einstein cosmological model can be generated in this manner, but in the framework of strong gravity only, a micro-Einstein universe being then viewed as a possible model for a hadron.Boursier A.G.C.D.  相似文献   

7.
The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.  相似文献   

8.
We discuss inhomogeneous cosmological models which satisfy the Copernican principle. We construct some inhomogeneous cosmological models starting from the ansatz that the all the observers in the models view an isotropic cosmic microwave background. We discuss multi-fluid models, and illustrate how more general inhomogeneous models may be derived, both in General Relativity and in scalar-tensor theories of gravity. Thus we illustrate that the cosmologicalprinciple, the assumption that the Universe we live in is spatially homogeneous, does not necessarily follow from the Copernican principle and the high isotropy of the cosmic microwave background. We also present some new conformally flat two-fluid solutions of Einstein's field equations.  相似文献   

9.
In this paper, we propose a simple finite temperature λφ4 cosmological model to show that a new type singularity free cosmological model could be established by taing a series of impoftant quantum and statistical effects into consideration such as spontaneoui rymetry breaking, trace anomaly and pirtide creation, symmetry restoration at hish temperature through.phase transition and others. To begin with, the state of the universe would be a cold singu1arity.free and horizon free Beltrami-Anti de Sitter one rather than a hot one. Then associated with the,particle creatipl, the temperature would, become higher and higher and as soon. as the temperature reached a critical value, Tc a second-order phase transition would take place and the universe would transfer to a hot radiation dominated Friedmann state.  相似文献   

10.
This paper is devoted to study Bianchi type I cosmological model in Brans–Dicke theory with self-interacting potential by using perfect, anisotropic and magnetized anisotropic fluids. We assume that the expansion scalar is proportional to the shear scalar and also take a power law ansatz for the scalar field. The physical behavior of the resulting models are discussed through different parameters. We conclude that contrary to the universe model, the anisotropic fluid approaches isotropy at later times in all cases, which is consistent with observational data.  相似文献   

11.
A world is to be considered stationary in the sense of general relativity if the coefficients of its metric are independent of time in a coordinate system in which the masses are at rest on average. The remark on the system of coordinates is important because time itself is no invariant notion but is taken only in the sense of proper time. Our definition is unique, in the form given above. On the other hand it is also possible to have points where no matter is present. At such points we may place a test body of infinitesimally small mass and analyse whether it remains at rest in our coordinate system. A necessary and sufficient condition for this is that the time lines of our coordinate system are geodesics. Therefore the static solution given by de Sitter is not an example of a stationary world. The Schwarzschild line element which, from a cosmological point of view, is a world with a single central body can also not be considered a stationary solution. Indeed, there are no stationary solutions which are also spherically symmetric for the original field equations. The only such solution for the cosmological equations is Einstein's cylinder world. It is, to my knowledge, the only stationary world known so far. In that case the average matter density and the total mass of the world has to have a well defined value given by the cosmological constant which doubtless would be purely coincidental and is thus not a satisfactory assumption. In the following we shall discuss a new solution which is in accord with the original field equations without the need of an a priori relation between mass and cosmological constant. However, we shall find that its mass cannot be less than the mass of the cylinder world.  相似文献   

12.
Multi-messenger gravitational wave (GW) observation for binary neutron star merger events could provide a rather useful tool to explore the evolution of the Universe. In particular, for the third-generation GW detectors, i.e. the Einstein Telescope (ET) and the Cosmic Explorer (CE), proposed to be built in Europe and the U.S., respectively, lots of GW standard sirens with known redshifts could be obtained, which would exert great impacts on the cosmological parameter estimation. The total neutrino mass could be measured by cosmological observations, but such a measurement is model-dependent and currently only gives an upper limit. In this work, we wish to investigate whether the GW standard sirens observed by ET and CE could help improve the constraint on the neutrino mass, in particular in the interacting dark energy (IDE) models. We find that the GW standard siren observations from ET and CE can only slightly improve the constraint on the neutrino mass in the IDE models, compared to the current limit. The improvements in the IDE models are weaker than those in the standard cosmological model. Although the limit on neutrino mass can only be slightly updated, the constraints on other cosmological parameters can be significantly improved by using the GW observations.  相似文献   

13.
Solutions to the Stephenson-Yang theory of gravity and its generalizations are discussed. By considering the inclusion of a cosmological term in the action spherically symmetric static solutions are presented that do not fall into the vacuum Einstein class. A simple double-duality ansatz is responsible for all the solutions that are discussed.On leave from the Physics Department, Middle East Technical University, Ankara, Turkey.  相似文献   

14.
We investigate an exact solution that describes the embedding of the four-dimensional (4D) perfect fluid in a five-dimensional (5D) Einstein spacetime. The effective metric of the 4D perfect fluid as a hypersurface with induced matter is equivalent to the Robertson–Walker metric of cosmology. This general solution shows interconnections among many 5D solutions, such as the solution in the braneworld scenario and the topological black hole with cosmological constant. If the 5D cosmological constant is positive, the metric periodically depends on the extra dimension. Thus we can compactify the extra dimension on S1S1 and study the phenomenological issues. We also generalize the metric ansatz to the higher-dimensional case, in which the 4D part of the Einstein equations can be reduced to a linear equation.  相似文献   

15.
A cosmological substratum for energy propagation is defined in terms of a hypothesis by McCrea. It has been shown that the assumption of such a substratum for a uniformly expanding universe provides a cosmological interpretation of Special Relativity, and leads further to a theory of gravitation in terms of a universal acceleration field. Following a critical discussion of the bases of General Relativity, it is suggested that the proposed substratum model and its consequences are also compatible with the General Relativistic approach, providing that this is applied in a manner which recognises the centrally directed character of gravitational fields, and hence employs harmonic coordinates as proposed by Fock. It is shown that Fock's procedure leads to results which are consistent with the assumption of a uniformly expanding cosmological substratum. Finally, it is suggested that the cosmological substratum concept is also implied by the formulation of the Robertson-Walker metric.  相似文献   

16.
Astrophysical observations provide a picture of the universe as a 4-dim homogeneous and isotropic flat space-time dominated by an unknown form of dark energy. To achieve such a cosmology one has to consider in the early universe an inflationary era able to overcome problems of standard cosmological models.Here an inhomogeneous model is proposed which allows to obtain a Friedmann-Robertson-Walker behaviour far away from the inhomogeneities and it naturally describes structures formation.We also obtain that the cosmological term does not prevent structure formation, avoiding a fine tuning problem in initial conditions.The asymptotic exact solution have been calculated. A simple test with universe age prediction has been performed. A relation between the inhomogeneity, the breaking of time reversal, parity and the matter-antimatter asymmetry is briefly discussed.  相似文献   

17.
It is suggested that the existence of a preferred cosmological reference frame has a number of generally unrecognized implications which are by no means inconsistent with the assumptions and consequences of special relativity. Indeed, the assumption that there exists a cosmological fundamental reference frame for light propagation leads to an intelligible interpretation of relativistic effects and of the null observations of Michelson-Morley-type experiments. Hence all such experiments are impotent for the detection of any such fundamental frame, and it is shown that this applies also to the ingenious coupled-mirrors experiment proposed by S. Marinov. Only astronomical observation allied to cosmological theory can reveal the existence of this frame.  相似文献   

18.
We study Abelian strings in a fixed de Sitter background. We find that the gauge and Higgs fields extend smoothly across the cosmological horizon and that the string solutions have oscillating scalar fields outside the cosmological horizon for all currently accepted values of the cosmological constant. If the gauge to Higgs boson mass ratio is small enough, the gauge field function has a power-like behaviour, while it is oscillating outside the cosmological horizon if Higgs and gauge boson mass are comparable. Moreover, we observe that Abelian strings exist only up to a maximal value of the cosmological constant and that two branches of solutions exist that meet at this maximal value. We also construct radially excited solutions that only exist for non-vanishing values of the cosmological constant and are thus a novel feature as compared to flat space–time. Considering the effect of the de Sitter string on the space–time, we observe that the deficit angle increases with increasing cosmological constant. Lensed objects would thus be separated by a larger angle as compared to asymptotically flat space–time.  相似文献   

19.
We show how majoron models may be tested/limited in gravitational wave experiments. In particular,the majoron self-interaction potential may induce a first order phase transition, producing gravitational waves from bubble collisions. We dub such a new scenario the violent majoron model, because it would be associated with a violent phase transition in the early Universe. Sphaleron constraints can be avoided if the global U(1)_(B-L) is broken at scales lower than the electroweak scale, provided that the B-L spontaneously breaking scale is lower than10 TeV in order to satisfy the cosmological mass density bound. The possibility of a sub-electroweak phase transition is practically unconstrained by cosmological bounds and it may be detected within the sensitivity of the next generation of gravitational wave experiments: eLISA, DECIGO and BBO. We also comment on its possible detection in the next generation of electron-positron colliders, where majoron production can be observed from the Higgs portals in missing transverse energy channels.  相似文献   

20.
An ansatz is proposed by which the energy transport behavior observed at early times in a direct numerical simulation (DNS) of a large irregular structure may be extrapolated to arbitrary times. In the slow-transport limit, this ansatz leads to a diffusion-like equation, similar to that of time-domain statistical energy analysis (SEA), but it does not require substructuring. The model is successfully used to extract diffusion parameters from simulated data of unambiguously diffusive character. The model is then successfully used to extract diffusion parameters from data obtained in a DNS of a simple undamped two-room structure of a kind typically analyzed by SEA or room acoustics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号