首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The classical Poisson theorem says that if ξ 1, ξ 2, … are i.i.d. 0–1 Bernoulli random variables taking on 1 with probability p n λ/n, then the sum S n = Σ i=1 n ξ i is asymptotically in n Poisson distributed with the parameter λ. It turns out that this result can be extended to sums of the form ${S_n} = \sum\nolimits_{i = 1}^n {{\xi _{{q_1}(i)}} \cdots {\xi _{{q_\ell }(i)}}} $ where now ${X_{{q_1}(i), \ldots ,}}{X_{{q_\ell }(i)}}$ and ${T^{{q_1}(i)}}x, \ldots ,{T^{{q_\ell }(i)}}x$ are integer-valued increasing functions. We obtain also the Poissonian limit for numbers of arrivals to small sets of ?-tuples ${X_{{q_1}(i), \ldots ,}}{X_{{q_\ell }(i)}}$ for some Markov chains X n and for numbers of arrivals of ${T^{{q_1}(i)}}x, \ldots ,{T^{{q_\ell }(i)}}x$ to small cylinder sets for typical points x of a sub-shift of finite type T.  相似文献   

2.
Let {X k,i ; i ≥ 1, k ≥ 1} be a double array of nondegenerate i.i.d. random variables and let {p n ; n ≥ 1} be a sequence of positive integers such that n/p n is bounded away from 0 and ∞. In this paper we give the necessary and sufficient conditions for the asymptotic distribution of the largest entry ${L_{n}={\rm max}_{1\leq i < j\leq p_{n}}|\hat{\rho}^{(n)}_{i,j}|}$ of the sample correlation matrix ${{\bf {\Gamma}}_{n}=(\hat{\rho}_{i,j}^{(n)})_{1\leq i,j\leq p_{n}}}$ where ${\hat{\rho}^{(n)}_{i,j}}$ denotes the Pearson correlation coefficient between (X 1,i , ..., X n,i )′ and (X 1,j ,...,X n,j )′. Write ${F(x)= \mathbb{P}(|X_{1,1}|\leq x), x\geq0}$ , ${W_{c,n}={\rm max}_{1\leq i < j\leq p_{n}}|\sum_{k=1}^{n}(X_{k,i}-c)(X_{k,j}-c)|}$ , and ${W_{n}=W_{0,n},n\geq1,c\in(-\infty,\infty)}$ . Under the assumption that ${\mathbb{E}|X_{1,1}|^{2+\delta} < \infty}$ for some δ > 0, we show that the following six statements are equivalent: $$ {\bf (i)} \quad \lim_{n \to \infty} n^{2}\int\limits_{(n \log n)^{1/4}}^{\infty}\left( F^{n-1}(x) - F^{n-1}\left(\frac{\sqrt{n \log n}}{x}\right) \right) dF(x) = 0,$$ $$ {\bf (ii)}\quad n \mathbb{P}\left ( \max_{1 \leq i < j \leq n}|X_{1,i}X_{1,j} | \geq \sqrt{n \log n}\right ) \to 0 \quad{\rm as}\,n \to \infty,$$ $$ {\bf (iii)}\quad \frac{W_{\mu, n}}{\sqrt {n \log n}}\stackrel{\mathbb{P}}{\rightarrow} 2\sigma^{2},$$ $$ {\bf (iv)}\quad \left ( \frac{n}{\log n}\right )^{1/2} L_{n} \stackrel{\mathbb{P}}{\rightarrow} 2,$$ $$ {\bf (v)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (\frac{W_{\mu, n}^{2}}{n \sigma^{4}} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8\pi}} e^{-t/2}\right \}, - \infty < t < \infty,$$ $$ {\bf (vi)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (n L_{n}^{2} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8 \pi}} e^{-t/2}\right \}, - \infty < t < \infty$$ where ${\mu=\mathbb{E}X_{1,1}, \sigma^{2}=\mathbb{E}(X_{1,1} - \mu)^{2}}$ , and a n  = 4 log p n ? log log p n . The equivalences between (i), (ii), (iii), and (v) assume that only ${\mathbb{E}X_{1,1}^{2} < \infty}$ . Weak laws of large numbers for W n and L n , n ≥  1, are also established and these are of the form ${W_{n}/n^{\alpha}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(\alpha > 1/2)$ and ${n^{1-\alpha}L_{n}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(1/2 < \alpha \leq 1)$ , respectively. The current work thus provides weak limit analogues of the strong limit theorems of Li and Rosalsky as well as a necessary and sufficient condition for the asymptotic distribution of L n obtained by Jiang. Some open problems are also posed.  相似文献   

3.
A bounded linear operator A acting on a Banach space X is said to be an upper triangular block operators of order n, and we write ${A \in \mathcal{UT}_{n}(X)}$ , if there exists a decomposition of ${X = X_{1} \oplus . . . \oplus X_{n}}$ and an n × n matrix operator ${(A_{i,j})_{\rm 1 \leq i, j \leq n}}$ such that ${A = (A_{i, j})_{1 \leq i, j \leq n}, A_{i, j} = 0}$ for i > j. In this note we characterize a large set of entries A i, j with j > i such that ${\sigma_{\rm D} (A) = {\bigcup\limits_{i = 1}^{n}} \sigma_{\rm D} (A_{i, i})}$ ; where σD(.) is the Drazin spectrum. Some applications concerning the Fredholm theory and meromorphic operators are given.  相似文献   

4.
We consider the stochastic recursion ${X_{n+1} = M_{n+1}X_{n} + Q_{n+1}, (n \in \mathbb{N})}$ , where ${Q_n, X_n \in \mathbb{R}^d }$ , M n are similarities of the Euclidean space ${ \mathbb{R}^d }$ and (Q n , M n ) are i.i.d. We study asymptotic properties at infinity of the invariant measure for the Markov chain X n under assumption ${\mathbb{E}{[\log|M|]}=0}$ i.e. in the so called critical case.  相似文献   

5.
Let ${\mathbf{T}=\{T(t)\} _{t\in\mathbb{R}}}$ be a ??(X, F)-continuous group of isometries on a Banach space X with generator A, where ??(X, F) is an appropriate local convex topology on X induced by functionals from ${ F\subset X^{\ast}}$ . Let ?? A (x) be the local spectrum of A at ${x\in X}$ and ${r_{A}(x):=\sup\{\vert\lambda\vert :\lambda \in \sigma_{A}(x)\},}$ the local spectral radius of A at x. It is shown that for every ${x\in X}$ and ${\tau\in\mathbb{R},}$ $$\left\Vert T(\tau) x-x\right\Vert \leq \left\vert \tau \right\vert r_{A}(x)\left\Vert x\right\Vert.$$ Moreover if ${0\leq \tau r_{A}(x)\leq \frac{\pi}{2},}$ then it holds that $$\left\Vert T(\tau) x-T(-\tau)x\right\Vert \leq 2\sin \left(\tau r_{A}(x)\right)\left\Vert x\right\Vert.$$ Asymptotic versions of these results for C 0-semigroup of contractions are also obtained. If ${\mathbf{T}=\{T(t)\}_{t\geq 0}}$ is a C 0-semigroup of contractions, then for every ${x\in X}$ and ????? 0, $$\underset{t\rightarrow \infty }{\lim } \left\Vert T( t+\tau) x-T(t) x\right\Vert\leq\tau\sup\left\{ \left\vert \lambda \right\vert :\lambda \in\sigma_{A}(x)\cap i \mathbb{R} \right\} \left\Vert x\right\Vert. $$ Several applications are given.  相似文献   

6.
Suppose that X is a right process which is associated with a non-symmetric Dirichlet form $(\mathcal{E},D(\mathcal{E}))$ on L 2(E;m). For $u\in D(\mathcal{E})$ , we have Fukushima??s decomposition: $\tilde{u}(X_{t})-\tilde{u}(X_{0})=M^{u}_{t}+N^{u}_{t}$ . In this paper, we investigate the strong continuity of the generalized Feynman?CKac semigroup defined by $P^{u}_{t}f(x)=E_{x}[e^{N^{u}_{t}}f(X_{t})]$ . Let $Q^{u}(f,g)=\mathcal{E}(f,g)+\mathcal{E}(u,fg)$ for $f,g\in D(\mathcal{E})_{b}$ . Denote by J 1 the dissymmetric part of the jumping measure J of $(\mathcal{E},D(\mathcal{E}))$ . Under the assumption that J 1 is finite, we show that $(Q^{u},D(\mathcal{E})_{b})$ is lower semi-bounded if and only if there exists a constant ?? 0??0 such that $\|P^{u}_{t}\|_{2}\leq e^{\alpha_{0}t}$ for every t>0. If one of these conditions holds, then $(P^{u}_{t})_{t\geq0}$ is strongly continuous on L 2(E;m). If X is equipped with a differential structure, then this result also holds without assuming that J 1 is finite.  相似文献   

7.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

8.
In this paper, we establish gradient estimates in Morrey spaces and H?lder continuity for weak solutions of the following degenerate elliptic system $$-X_{\alpha}^{\ast}(a_{ij}^{\alpha\beta}(x)X_{\beta}u^{j})=g_{i}-X_{\alpha}^{\ast}f_{i}^{\alpha}(x),$$ where X 1, . . . , X q are real smooth vector fields satisfying H?rmander’s condition, coefficients ${a_{ij}^{\alpha \beta }\in VMO_X \cap L^\infty (\Omega ), \alpha,\beta=1,2, \,.\,.\,.\, ,q, i,j=1,2, \,.\,.\,.\, ,N, X_{\alpha}^{\ast}}$ is the transposed vector field of X α.  相似文献   

9.
We study correlation bounds under pairwise independent distributions for functions with no large Fourier coefficients. Functions in which all Fourier coefficients are bounded by δ are called δ-uniform. The search for such bounds is motivated by their potential applicability to hardness of approximation, derandomization, and additive combinatorics. In our main result we show that $\operatorname{\mathbb {E}}[f_{1}(X_{1}^{1},\ldots,X_{1}^{n}) \ldots f_{k}(X_{k}^{1},\ldots,X_{k}^{n})]$ is close to 0 under the following assumptions:
  • the vectors $\{ (X_{1}^{j},\ldots,X_{k}^{j}) : 1 \leq j \leq n\}$ are independent identically distributed, and for each j the vector $(X_{1}^{j},\ldots,X_{k}^{j})$ has a pairwise independent distribution;
  • the functions f i are uniform;
  • the functions f i are of low degree.
  • We compare our result with recent results by the second author for low influence functions and to recent results in additive combinatorics using the Gowers norm. Our proofs extend some techniques from the theory of hypercontractivity to a multilinear setup.  相似文献   

    10.
    We consider the following system of integral equations $${u_{i}(t)=\int\nolimits_{I} g_{i}(t, s)f(s, u_{1}(s), u_{2}(s), \cdots, u_{n}(s))ds, \quad t \in I, \ 1 \leq i\leq n}$$ where I is an interval of $\mathbb{R}$ . Our aim is to establish criteria such that the above system has a constant-sign periodic and almost periodic solution (u 1, u 2,…,u n ) when I is an infinite interval of $\mathbb{R}$ , and a constant-sign periodic solution when I is a finite interval of $\mathbb{R}$ . The above problem is also extended to that on $\mathbb{R}$ $$u_{i} {\left( t \right)} = {\int_\mathbb{R} {g_{i} {\left( {t,s} \right)}f_{i} {\left( {s,u_{1} {\left( s \right)},u_{2} {\left( s \right)}, \cdots ,u_{n} {\left( s \right)}} \right)}ds\quad t \in \mathbb{R},\quad 1 \leqslant i \leqslant n.} }$$   相似文献   

    11.
    Let (X jk ) jk≥1 be i.i.d. nonnegative random variables with bounded density, mean m, and finite positive variance σ 2. Let M be the nn random Markov matrix with i.i.d. rows defined by ${M_{jk}=X_{jk}/(X_{j1}+\cdots+X_{jn})}$ . In particular, when X 11 follows an exponential law, the random matrix M belongs to the Dirichlet Markov Ensemble of random stochastic matrices. Let λ1, . . . , λ n be the eigenvalues of ${\sqrt{n}M}$ i.e. the roots in ${\mathbb{C}}$ of its characteristic polynomial. Our main result states that with probability one, the counting probability measure ${\frac{1}{n}\delta_{\lambda_1}+\cdots+\frac{1}{n}\delta_{\lambda_n}}$ converges weakly as n→∞ to the uniform law on the disk ${\{z\in\mathbb{C}:|z|\leq m^{-1}\sigma\}}$ . The bounded density assumption is purely technical and comes from the way we control the operator norm of the resolvent.  相似文献   

    12.
    In this paper, an efficient algorithm is presented for minimizing $\|A_1X_1B_1 + A_2X_2B_2+\cdots +A_lX_lB_l-C\|$ where $\|\cdot \|$ is the Frobenius norm, $X_i\in R^{n_i \times n_i}(i=1,2,\cdots ,l)$ is a reflexive matrix with a specified central principal submatrix $[x_{ij}]_{r\leq i,j\leq n_i-r}$ . The algorithm produces suitable $[X_1,X_2,\cdots ,X_l]$ such that $\|A_1X_1B_1+A_2X_2B_2+\cdots +A_lX_lB_l-C\|=\min $ within finite iteration steps in the absence of roundoff errors. We show that the algorithm is stable any case. The algorithm requires little storage capacity. Given numerical examples show that the algorithm is efficient.  相似文献   

    13.
    Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

    14.
    Let $\left\{ X,X_{i},i=1,2,...\right\} $ denote independent positive random variables having common distribution function (d.f.) F(x) and, independent of X, let ν denote an integer valued random variable. Using X 0=0, the random sum Z=∑ i=0 ν X i has d.f. $G(x)=\sum_{n=0}^{\infty }\Pr\{\nu =n\}F^{n\ast }(x)$ where F n?(x) denotes the n-fold convolution of F with itself. If F is subexponential, Kesten’s bound states that for each ε>0 we can find a constant K such that the inequality $$ 1-F^{n\ast }(x)\leq K(1+\varepsilon )^{n}(1-F(x))\, , \qquad n\geq 1,x\geq 0 \, , $$ holds. When F is subexponential and E(1 +ε) ν <∞, it is a standard result in risk theory that G(x) satisfies $$ 1 - G{\left( x \right)} \sim E{\left( \nu \right)}{\left( {1 - F{\left( x \right)}} \right)},\,\,x \to \infty \,\,{\left( * \right)} $$ In this paper, we show that (*) holds under weaker assumptions on ν and under stronger conditions on F. Stam (Adv. Appl. Prob. 5:308–327, 1973) considered the case where $ \overline{F}(x)=1-F(x)$ is regularly varying with index –α. He proved that if α>1 and $E{\left( {\nu ^{{\alpha + \varepsilon }} } \right)} < \infty $ , then relation (*) holds. For 0<α<1, it is sufficient that Eν<∞. In this paper we consider the case where $\overline{F}(x)$ is an O-regularly varying subexponential function. If the lower Matuszewska index $\beta (\overline{F})<-1$ , then the condition ${\text{E}}{\left( {\nu ^{{{\left| {\beta {\left( {\overline{F} } \right)}} \right|} + 1 + \varepsilon }} } \right)} < \infty$ is sufficient for (*). If $\beta (\overline{F} )>-1$ , then again Eν<∞ is sufficient. The proofs of the results rely on deriving bounds for the ratio $\overline{F^{n\ast }}(x)/\overline{F} (x)$ . In the paper, we also consider (*) in the special case where X is a positive stable random variable or has a compound Poisson distribution derived from such a random variable and, in this case, we show that for n≥2, the ratio $\overline{F^{n\ast }}(x)/\overline{F}(x)\uparrow n$ as x↑∞. In Section 3 of the paper, we briefly discuss an extension of Kesten’s inequality. In the final section of the paper, we discuss a multivariate analogue of (*).  相似文献   

    15.
    The characteristic rank of a vector bundle ξ over a finite connected CW-complex X is by definition the largest integer ${k, 0 \leq k \leq \mathrm{dim}(X)}$ , such that every cohomology class ${x \in H^{j}(X;\mathbb{Z}_2), 0 \leq j \leq k}$ , is a polynomial in the Stiefel–Whitney classes w i (ξ). In this note we compute the characteristic rank of vector bundles over the Stiefel manifold ${V_k(\mathbb{F}^n), \mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}}$ .  相似文献   

    16.
    Let a representation T of a unital topological semigroup G on a topological linear space X be given. We call ${x \in X}$ a finite vector if its orbit T(G)x is contained in a finite dimensional subspace. In this paper some statements on finite vectors will be proved and applied to the functional equation $$ f(g_1g_2\cdots g_n) = \sum_{E}\sum_{j=1}^{N_E}u^E_jv^E_j $$ where E runs through all proper non-empty subsets of ${\{1,2,\ldots,n\}, N_E \in \mathbb{N}}$ , and for each E, the functions ${u^E_j}$ only depend on variables g i with ${i\in E}$ , while the ${v^E_j}$ only depend on g i with ${i\notin E}$ .  相似文献   

    17.
    One considers Gelfand’s hypergeometric functions on the space of p×q matrices and their generalizations to the case of multi-dimensional matrices of arbitrary order k 1×???×k p. It is shown that these functions form bases of some $\frak g$ -modules, where $\frak g=\frak{gl}(p,\mathbb{C})\times\frak{gl}(q,\mathbb{C})$ or $\frak g=\frak{gl}(k_{1},\mathbb{C})\times\cdots\times\frak{gl}(k_{p},\mathbb{C})$ , respectively.  相似文献   

    18.
    Let ${K=\mathbb{Q}(\theta)}$ be an algebraic number field with θ in the ring A K of algebraic integers of K and f(x) be the minimal polynomial of θ over the field ${\mathbb{Q}}$ of rational numbers. For a rational prime p, let ${\bar{f}(x)\,=\,\bar{g}_{1}(x)^{e_{1}}....\bar{g}_{r}(x)^{e_{r}}}$ be the factorization of the polynomial ${\bar{f}(x)}$ obtained by reducing coefficients of f(x) modulo p into a product of powers of distinct irreducible polynomials over ${\mathbb{Z}/p\mathbb{Z}}$ with g i (x) monic. Dedekind proved that if p does not divide [ ${A_{K}:\mathbb{Z}}$ [θ]], then ${pA_{K}=\wp_{1}^{e_{1}}\ldots\wp_{r}^{e_{r}}}$ , where ${\wp_{1},\ldots,\wp_{r}}$ are distinct prime ideals of A K , ${\wp_{i}=pA_{K}+g_{i}(\theta)A_{K}}$ having residual degree equal to the degree of ${\bar{g}_{i}(x)}$ . He also proved that p does not divide [ ${A_{K}:\mathbb{Z}}$ [θ]] if and only if for each i, either e i  = 1 or ${\bar{g}_{i}(x)}$ does not divide ${\bar{M}(x)}$ where ${M(x)=\frac{1}{p}(f(x)-g_{1}(x)^{e_{1}}....g_{r}(x)^{e_{r}})}$ . Our aim is to give a weaker condition than the one given by Dedekind which ensures that if the polynomial ${\bar{f}(x)}$ factors as above over ${\mathbb{Z}/p\mathbb{Z}}$ , then there are exactly r prime ideals of A K lying over p, with respective residual degrees ${\deg \bar {g}_{1}(x),...,\deg \bar {g}_{r}(x)}$ and ramification indices e 1, ..., e r . In this paper, the above problem has been dealt with in a more general situation when the base field is a valued field (K, v) of arbitrary rank and K(θ) is any finite extension of K.  相似文献   

    19.
    The main goal of this paper is to characterize arbitrary nonlinear (non-multilinear) mappings ${f:X_{1}\times\cdots\times X_{n}\rightarrow Y}$ between Banach spaces that satisfy a quite natural Pietsch Domination-type theorem around a given point ${(a_{1},\ldots,a_{n})\in X_{1}\times\cdots\times X_{n}}$ . As a consequence of our approach a notion of weighted summability arises naturally, which may be an interesting topic for further investigation.  相似文献   

    20.
    Let ${2-\textsf{RAN}}$ be the statement that for each real X a real 2-random relative to X exists. We apply program extraction techniques we developed in Kreuzer and Kohlenbach (J. Symb. Log. 77(3):853–895, 2012. doi:10.2178/jsl/1344862165), Kreuzer (Notre Dame J. Formal Log. 53(2):245–265, 2012. doi:10.1215/00294527-1715716) to this principle. Let ${{\textsf{WKL}_0^\omega}}$ be the finite type extension of ${\textsf{WKL}_0}$ . We obtain that one can extract primitive recursive realizers from proofs in ${{\textsf{WKL}_0^\omega} + \Pi^0_1-{\textsf{CP}} + 2-\textsf{RAN}}$ , i.e., if ${{\textsf{WKL}_0^\omega} + \Pi^0_1-{\textsf{CP}} + 2-\textsf{RAN} \, {\vdash} \, \forall{f}\, {\exists}{x} A_{qf}(f,x)}$ then one can extract from the proof a primitive recursive term t(f) such that ${A_{qf}(f,t(f))}$ . As a consequence, we obtain that ${{\textsf{WKL}_0}+ \Pi^0_1 - {\textsf{CP}} + 2-\textsf{RAN}}$ is ${\Pi^0_3}$ -conservative over ${\textsf{RCA}_0}$ .  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号