首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
We study the quantum phases of anisotropic XY spin chain in presence and absence of adiabatic quench. A connection between geometric phase and criticality is established from the dynamical behavior of the geometric phase for a quench induced quantum phase transition in a quantum spin chain. We predict XX criticality associated with a sequence of non-contractible geometric phases.  相似文献   

2.
朱诗亮 《物理》2006,35(11):919-923
量子相变是凝聚态物理中的重要研究课题,而几何相位的发现是近几十年来量子力学中的重要进展,它们毫无关联地各自发展。但最近的研究表明,它们之间有密切联系:多体体系基态的几何相位在量子相变点附近具有标度性;不可收缩的几何相位可用来作为量子相变的标志等,文章将介绍最近在量子相变和几何相位的关系方面的研究进展,并用XY自旋链模型来详细说明.这些结果应会吸引凝聚态和几何相位领域工作的研究人员的关注和兴趣。  相似文献   

3.
R. Jafari 《Physics letters. A》2013,377(45-48):3279-3282
A relation between geometric phases and criticality of spin chains are studied using the quantum renormalization-group approach. I have shown how the geometric phase evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. The renormalization scheme demonstrates how the first derivative of the geometric phase with respect to the field strength diverges at the critical point and maximum value of the first derivative, and its position, scales with the exponent of the system size.  相似文献   

4.
Berry phases and the quantum-information theoretic notion of fidelity have been recently used to analyze quantum phase transitions from a geometrical perspective. In this Letter we unify these two approaches showing that the underlying mechanism is the critical singular behavior of a complex tensor over the Hamiltonian parameter space. This is achieved by performing a scaling analysis of this quantum geometric tensor in the vicinity of the critical points. In this way most of the previous results are understood on general grounds and new ones are found. We show that criticality is not a sufficient condition to ensure superextensive divergence of the geometric tensor, and state the conditions under which this is possible. The validity of this analysis is further checked by exact diagonalization of the spin-1/2 XXZ Heisenberg chain.  相似文献   

5.
In this paper the geometric phases of two entangled spin-1/2 particles in the presence and absence of spin-spin interaction are calculated. We also discuss the geometric phases when only one of the two particles is affected by the external magnetic field. Our results show that the geometric phase in this case is not equal to that of a single particle under the same evolution condition because of the effect of entanglement. We further study the entanglement dependence of the noncyclic geometric phases in the interacting and noninteracting spins under a time-independent uniform magnetic field. A general entanglement-dependence geometric phase is formulated.  相似文献   

6.
Four-component massive and massless Dirac fermions in the presence of long range Coulomb interaction and chemical potential disorder exhibit striking fermionic quantum criticality. For an odd number of flavors of Dirac fermions, the sign of the Dirac mass distinguishes the topological and the trivial band insulator phases, and the gapless semimetallic phase corresponds to the quantum critical point that separates the two. Up to a critical strength of disorder, the semimetallic phase remains stable, and the universality class of the direct phase transition between two insulating phases is unchanged. Beyond the critical strength of disorder the semimetallic phase undergoes a phase transition into a disorder controlled diffusive metallic phase, and there is no longer a direct phase transition between the two types of insulating phases.  相似文献   

7.
A geometric phase of open system is directly obtained from Schrödinger equation with a hermitian Hamiltonian of a two-level atomic system interacting with its reservoirs. We find that the dynamical phases are proportional to the geometric phases in terms of Weisskopf-Wigner theory in the rotational frame. Thus an effective scheme to measure the Berry phase in a charge qubit dissipative system is proposed by coherently controlling the macroscopic quantum states formed in superconducting circuits. Our approach does not need any operations to cancel the dynamical phases so as to reduce the experimental errors. Furthermore, we find that the dissipative effects can be overcome by choosing adapted parameters of the superconducting circuit.  相似文献   

8.
We use the quantum kinematic approach to revisit geometric phases associated with polarizing processes of a monochromatic light wave. We give the expressions of geometric phases for any, unitary or non-unitary, cyclic or non-cyclic transformations of the light wave state. Contrarily to the usually considered case of absorbing polarizers, we found that a light wave passing through a polarizer may acquire in general a nonzero geometric phase. This geometric phase exists despite the fact that initial and final polarization states are in phase according to the Pancharatnam criterion and cannot be measured using interferometric superposition. Consequently, there is a difference between the Pancharatnam phase and the complete geometric phase acquired by a light wave passing through a polarizer. We illustrate our work with the particular example of total reflection based polarizers.  相似文献   

9.
This paper develops a new complex Hamiltonian structure forn-soliton solutions for a class of integrable equations such as the nonlinear Schrödinger, sine-Gordon and Korteweg-de Vries hierarchies of equations that yields, amongst other things, geometric phases in the sense of Hannay and Berry. For example, one of the possible soliton geometric phases is manifested by the well known phase shift that occurs for interacting solitons. The main new tools are complex angle representations that linearize the corresponding Hamiltonian flows on associated noncompact Jacobi varieties. This new structure is obtained by taking appropriate limits of the differential equations describing the class of quasi-periodic solutions. A method of asymptotic reduction of the angle representations is introduced for investigating soliton geometric phases that are related to the presence of monodromy at singularities in the space of parameters. In particular, the phase shift of interacting solitons can be expressed as an integral over a cycle on an associated Riemann surface. In this setting, soliton geometric asymptotics are constructed for studying geometric phases in the quantum case. The general approach is worked out in detail for the three specific hierarchies of equations mentioned. Some links with -functions, the braid group and geometric quantization are pointed out as well.Communicated by A. Jaffe  相似文献   

10.
We analyze the energetics of spherelike micellar phases in diblock copolymers in terms of well-studied, geometric quantities for their lattices. We argue that the A15 lattice with Pm3;n symmetry should be favored as the blocks become more symmetric and corroborate this through a self-consistent field theory. Because phases with columnar or bicontinuous topologies intervene, the A15 phase, though metastable, is not an equilibrium phase of symmetric diblocks. We investigate the phase diagram of branched diblocks and find that the A15 phase is stable.  相似文献   

11.
Arun Kumar Pati 《Pramana》1994,42(6):455-465
The concept of a curve traced by a state vector in the Hilbert space is introduced into the general context of quantum evolutions and its length defined. Three important curves are identified and their relation to the dynamical phase, the geometric phase and the total phase are studied. These phases are reformulated in terms of the dynamical curve, the geometric curve and the natural curve. For any arbitrary cyclic evolution of a quantum system, it is shown that the dynamical phase, the geometric phase and their sums and/or differences can be expressed as the integral of the contracted length of some suitably-defined curves. With this, the phases of the quantum mechanical wave function attain new meaning. Also, new inequalities concerning the phases are presented.  相似文献   

12.
文章研究了自旋为1的粒子在旋转磁场中的几何相位和动力学相位.推导出如何计算自旋为1的粒子在绝热和非绝热演化中的几何相位和动力学相位公式,并利用这些公式计算其相位.最后我们讨论了三种情况下的Berry相位,当考虑ω1<<ω时,系统处于绝热近似,此时,几何相位就是Berry相位.  相似文献   

13.
We show that the interplay between geometric criticality and dynamical fluctuations leads to a novel universality class of the contact process on a randomly diluted lattice. The nonequilibrium phase transition across the percolation threshold of the lattice is characterized by unconventional activated (exponential) dynamical scaling and strong Griffiths effects. We calculate the critical behavior in two and three space dimensions, and we also relate our results to the recently found infinite-randomness fixed point in the disordered one-dimensional contact process.  相似文献   

14.
We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator(SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam–Berry phase(PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases.  相似文献   

15.
We present direct measurements of a new geometric phase acquired by optical beams carrying orbital angular momentum. This phase arises when the transverse mode of a beam is transformed following a closed path in the space of modes. The measurements were done via the interference of two copropagating optical beams that pass through the same interferometer parts but acquire different geometric phases. The method is insensitive to dynamical phases. The magnitude and sign of the measured phases are in excellent agreement with theoretical predictions.  相似文献   

16.
It is well known theoretically that materials possessing distinct adjoining quantum phases at zero temperature can display behaviour that is universal and insensitive to microscopic details. This is the phenomenon of quantum criticality. Universality is, however, a central feature of the phases themselves and one essential to identifying them. Recent developments in the study of correlated electron materials suggest that quantum criticality is present in these materials and has been masking the true nature of their phases. This raises troubling questions about the relation between theory and experiment in physics, as well as in science generally.  相似文献   

17.
In a neutron polarimetry experiment the mixed-state relative phases between spin eigenstates are determined from the maxima and minima of measured intensity oscillations. We consider evolutions leading to purely geometric, purely dynamical, and combined phases. It is experimentally demonstrated that the sum of the individually determined geometric and dynamical phases is not equal to the associated total phase which is obtained from a single measurement, unless the system is in a pure state.  相似文献   

18.
19.
We show that the geometric phase between any two states, including orthogonal states, can be extracted and measured using the notion of projective measurement, and we show that a topological number can be extracted in the geometric phase change in an infinitesimal loop near an orthogonal state. Also, the Pancharatnam phase change during the passage through an orthogonal state is shown to be either pi or zero (mod 2pi). All the off-diagonal geometric phases can be obtained from the projective geometric phase calculated with our generalized connection.  相似文献   

20.
Geometric phases are robust to local noises and the nonadiabatic ones can reduce the evolution time, thus nonadiabatic geometric gates have strong robustness and can approach high fidelity. However, the advantage of geometric phase has not been fully explored in previous investigations. Here,a scheme is proposed for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths. In the scheme, only geometric phase can be accumulated in a fast way, and thus it not only fully utilizes the local noise resistant property of geometric phase but also reduces the difficulty in experimental realization. Numerical results show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path. Furthermore, it proposes to construct universal quantum gate on superconducting circuits, with the fidelities of single-qubit gate and nontrivial two-qubit gate can achieve 99.97% and 99.87%, respectively. Therefore, these high-fidelity quantum gates are promising for large-scale fault-tolerant quantum computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号