共查询到11条相似文献,搜索用时 78 毫秒
1.
应用遗传算法结合连续投影算法近红外光谱检测土壤有机质研究 总被引:5,自引:0,他引:5
应用遗传算法结合连续投影算法近红外光谱检测土壤有机质研究。采集浙江省文城地区农田土壤样品近红外光谱数据,土壤样品数为394个。为简化模型,采用遗传算法结合连续投影算法挑选出18个特征波长建模,应用偏最小二乘回归建立有机质预测模型,建模集的决定系数为0.81,均方根预测误差为0.22, 剩余预测偏差为2.31,预测集的决定系数为0.83,均方根预测误差为0.20,剩余预测偏差为2.45。研究发现,遗传算法结合连续投影算法在简化模型同时,模型的预测评价指标同采用全谱波长建模并没有明显降低。因此,遗传算法结合连续投影算法挑选的特征波长可以应用于近红外光谱检测土壤有机质含量。 相似文献
2.
高光谱技术联合归一化光谱指数估算土壤有机质含量 总被引:4,自引:0,他引:4
随着近地高光谱遥感技术的发展,为快速、有效、非破坏性地获取土壤有机质(SOM)信息提供了可能。土壤高光谱波段数据众多,光谱数据变量之间存在较为严重的多重共线性,影响模型复杂结构,而构建归一化光谱指数(NDSI)可以有效去除冗余信息变量,放大光谱特征信息。以江汉平原公安县为研究区,采集56份耕层土样,在室内获取土壤光谱数据,采用“重铬酸钾-外加热法”测定SOM含量,对实测土壤光谱数据(Raw)进行倒数之对数(LR)、一阶微分(FDR)和连续统去除(CR)三种变换,计算四种变换的NDSI数值,分析SOM与NDSI的二维相关性,并对一维、二维相关系数进行全波段范围内的p=0.001水平上显著性检验,提取敏感波段和敏感光谱指数,结合偏最小二乘回归(PLSR)建立SOM的估算模型,探讨二维光谱指数用于建模的可行性。研究表明,二维相关系数相比一维相关系数有不同程度的提升,以LR最为显著,相关系数数值提升约0.26;基于二维相关性分析提取的敏感光谱指数的PLSR建模效果整体优于一维相关性分析提取的敏感波段,其中,NDSILR-PLSR模型的稳健性最优,验证集R2为0.82,模型验证RPD值为2.46,模型稳定可靠,可以满足SOM的精确监测需要,适合推广到区域范围内低分辨率的航空航天遥感(如ASTER,Landsat TM等),应用潜力较大。 相似文献
3.
土壤光谱重建的湿地土壤有机质含量多光谱反演 总被引:4,自引:0,他引:4
土壤有机质是湿地生态系统的重要元素,利用多光谱遥感技术可大尺度、快速获取其含量信息,对保护湿地生态系统具有重要意义。然而,由于不同地物光谱混合给多光谱数据带来光谱畸变,影响湿地土壤有机质含量的反演精度。为了消除不同地物光谱混合,实现湿地土壤有机质含量的准确、实时监测,以闽江鳝鱼滩湿地为研究区,利用线性波谱分解技术对原始影像的像元进行分解,重建土壤光谱,分析原始光谱、重建光谱与土壤有机质含量的相关性后,建立土壤有机质含量的反演模型。结果表明:利用线性波谱分解技术可有效消除原始影像中的植被端元,减少大部分道路及建筑物的反射干扰,重建后的土壤光谱特征曲线更趋近于自然状态下土壤的光谱曲线,重建效果显著;通过两种光谱与土壤有机质含量的相关系数对比,重建光谱更能准确的反映土壤光谱与土壤有机质含量的相关性;运用重建光谱构建土壤有机质含量的反演模型,其预测精度优于基于原始光谱的反演模型,R2和F分别提高0.124和2.223,RMSE则降低0.106,1∶1线检验的预测值与实测值的拟合度更高,模型可行且有效。由此得出结论,利用线性波谱分解技术消除不同地物光谱混合,重建土壤光谱,一定程度上可实现在自然条件下湿地土壤有机质含量的大面积、准确检测,具有较好的实际应用价值。 相似文献
4.
基于高光谱特征与人工神经网络模型对土壤含水量估算 总被引:3,自引:0,他引:3
土壤含水量(θ)是影响作物生长和作物产量的主要因素之一。旨在评估基于光谱特征参数的各种回归模型估算土壤含水量的精度,并比较人工神经网络(BP-ANN)和光谱特征参数模型的性能。2014年在室内获取砂土和壤土的土壤含水量和光谱反射率数据。结果表明:(1)当砂土容重为1.40 g·cm-3时,900~970 nm最大反射率和900~970 nm反射率总和估算θ达到极显著水平(R2超过0.90);容重为1.50 g·cm-3时,用蓝边最大反射率和900~970 nm反射率总和估算θ相关性最好(超过0.70);容重为1.60 g·cm-3时,780~970 nm反射率总和与560~760 nm归一化吸收深度的R2均超过0.90,达到极显著水平;容重为1.70 g·cm-3时,900~970 nm最大反射率和900~970 nm反射率总和的R2为0.88,呈极显著水平。(2)当土壤类型为壤土时,用900~970 nm最大反射率和900~970 nm反射率总和估算θ相关性最好。(3)蓝边反射率总和(R2=0.26和RMSE=0.09 m3·m-3)和780~970 nm吸收深度(R2=0.32和RMSE=0.10 m3·m-3)估算砂土的含水量相关性最好。在估算壤土的含水量时,900~970 nm最大反射率(R2=0.92和RMSE=0.05 m3·m-3)与900~970 nm反射率总和估算模型的精度最高(R2=0. 92和RMSE=0.04 m3·m-3)。(4)用人工神经网络模型能够更好地估算两种土壤的含水量(R2=0.87和RMSE=0.05 m3·m-3)。因此,人工神经网络模型对θ估算具有巨大的潜力。 相似文献
5.
不同质量含水量的土壤反射率光谱模拟模型 总被引:1,自引:0,他引:1
土壤含水量的时空分布与变化情况对土壤温度变化、陆地—大气间热量平衡以及陆面大气环流产生显著的影响,因此,对大范围内土壤含水量进行实时动态监测,获得某段时间内土壤含水量的连续变化情况具有重要的意义。研究目的是借助高光谱遥感手段,通过构建不同质量含水量的土壤反射率光谱模拟模型,深入了解土壤质量含水量与土壤反射率光谱之间的关系,为监测土壤含水量提供有效手段。利用ASD Field Spectral FR野外光谱仪和加水称重法获得北京市8个采样点的土壤样品不同质量含水量下的土壤反射率光谱实测数据,利用其中2个土壤样品不同质量含水量下的光谱数据构建含水土壤反射率光谱模拟模型,并利用未参与建模的另外6个土壤样品数据对该模型的模拟效果进行了检验。通过数据验证发现,当土壤质量含水量小于田间持水量时,该模型的模拟精度较高;而且对于不同的土壤样品,模型的模拟效果都比较好。最后又利用北京大学校园内三个采样点的实地测量光谱数据对模型进行了验证,光谱的模拟值与实测值之间的均方根误差最小可达0.005 8。因此该模型可实现对质量含水量小于田间持水量的不同类型土壤的反射率光谱进行较高精度的模拟。 相似文献
6.
高光谱遥感监测土壤含水量研究进展 总被引:12,自引:0,他引:12
土壤含水量是监测旱情墒情的关键参量,近年来在利用高光谱遥感数据监测土壤含水量方面,国内外进行了大量的研究。文章首先在分析利用不同波段监测土壤含水量的原理及优缺点基础上,指出高光谱遥感监测的独特优势和问题。并以此为出发点,从机理上归纳了土壤含水量对土壤反射率的整体影响,以及对不同波段响应的差异。在此基础上,从物理机理和统计方法两个方面,总结了土壤含水量与土壤反射率的关系。并分析和评价了各模型及统计方法中的关键问题和优缺点。以往研究土壤含水量与土壤反射率关系的实验方法中往往存在一些问题,文章也一一指出并提出了解决方案。同时,探讨了高光谱在消除植被影响,更好地反演土壤含水量方面的可行性。最后对未来的研究方向进行了展望。 相似文献
7.
基于遗传算法选择多光源下的光谱反射率重构研究 总被引:1,自引:0,他引:1
为解决基于RGB三通道信息值重构光谱反射率精度不理想的问题,提出了一种优化的基于RGB三通道信息的光谱反射率重构算法。首先编码产生随机选择多个光源的个体,RGB三通道值通过多项式回归算法预测多个光源下的三刺激值,并采用伪逆法进行多光源下的光谱反射率重构,然后将样本的重构精度作为个体的适应度评估值,以优胜劣汰,适者生存为原则对个体进行选择、交叉、变异操作,最后得到适用于颜色样本光谱重构的多个光源与基于这些光源重构得到的光谱反射率。实验选用Munsell颜色集作为训练样本集,RC24色卡、SG140色卡作为检测样本集,8个标准光源和82个发光二极管光源作为实验光源,采用该算法从90个光源中选取最优的光源组合并重构得到样本的光谱数据,并与Zhang提出的基于穷举法选择的多光源下的光谱重构方法和A光源下的伪逆法进行了重构精度对比。实验结果显示该研究提出的方法随着光源个数的增加,光谱反射率重构精度提高,特别是光源个数增加到3时,光谱重构精度提高的幅度最大。在三种重构方法中,该方法重构RC24的平均色差和平均光谱均方根误差分别为0.332 4和0.002 9,而Zhang的方法与伪逆法的平均色差分别为0.429 3和3.266,平均光谱均方根误差分别为0.029 7和0.004 8;该文方法重构SG140的平均色差和平均光谱均方根误差分别为0.486 2和0.007 3,而Zhang的方法与伪逆法的平均色差分别为0.544 8和3.821 9,平均光谱均方根误差分别为0.035 6和0.013 3。结果表明基于多光源下的光谱反射率重构精度明显优于基于单个光源下的重构精度,而基于遗传算法的多光源选择方法又优于穷举法,它能够根据颜色样本自动寻找到最优光源组合,从而基于最优多光源下的三刺激值重构样本的光谱反射率,提高了光谱反射率重构的精度。 相似文献
8.
多种群精英共享遗传算法在异常光谱识别中的应用 总被引:1,自引:0,他引:1
提出了一种基于多种群精英共享遗传算法的异常光谱识别方法.该方法应用于红外光谱数据的分析,并在删除异常光谱样本后使用偏最小二乘方法进行建模.与使用蒙特卡洛交叉验证、留一交叉检验、马氏距离以及传统遗传算法进行异常光谱识别的方法相比,所提方法将水分预测模型的预测误差平方和(PRESS)分别降低了72.4%,39.5%,39.5%和14.5%;将脂肪含量的预测模型的PRESS值分别降低了86.2,75.9%,84.9%和19.9%;将蛋白质含量的预测模型的PRESS值分别降低了56.5%,35.7%,35.7%和18.2%.实验表明,所提方法不仅能适应不同成分光谱数据的异常识别,而且删除异常光谱数据后所建立的模型具有较高的预测能力和较好的稳健性. 相似文献
9.
微分算法的艾比湖湿地自然保护区土壤有机质多光谱建模 总被引:2,自引:0,他引:2
针对以往利用高光谱数据来来反演土壤有机质(SOM)的可行性与可靠性,结合微分处理对光谱数据信息提取的高效性,提出了直接对多光谱遥感影像进行微分处理就可得出SOM建模研究,旨在为今后SOM速测提供参考。采用Landsat 8_OLI 多光谱遥感影像数据,对多光谱遥感影像进行辐射定标、几何校正、大气校正、镶嵌和裁剪,运用IDL软件对影像进行一阶微分处理和二阶微分处理,发现一阶微分图像能够更好地表达地物的真实情况,更好地区别水体与土壤。原始遥感影像包含大量的信息其中还包括噪声,通过微分处理后的遥感影像剔出了原始影像中反射率值突兀变化的部分。在研究区采用五点法采集土壤样品。室内实验用重铬酸钾氧化-容量法测得SOM数据。多光谱数据结合地面实测SOM数据,分析SOM与多光谱数据反射率的关系,发现一阶微分处理后的遥感数据与SOM含量的相关性存在敏感波段,说明一阶微分处理可以将原始遥感图像数据在多光谱范围内的一些隐含的土壤有机质信息释放出来。选取相关性高的数据建立基于原始遥感数据、一阶微分数据、二阶微分数据的单波段多光谱线性模型和多波段多光谱线性模型,选取最优模型来估算和反演土壤有机质含量。结论如下:(1)通过对原始影像进行微分处理发现,微分处理后的影像变化明显,一阶微分处理的影像噪声降低,更加突出了影像中土壤有机质隐藏的信息。二阶微分处理的影像抑制了土壤有机质信息。(2)原始遥感影像各波段数据对土壤有机质含量的相关性较低,一阶微分处理后的遥感影像数据反映出土壤有机质敏感波段即部分波段数据相关性明显高于原始数据,二阶微分处理后的遥感影像各波段数据对土壤有机质含量的相关性较弱。(3)多波段建模效果要优于单波段建模;一阶微分多波段模型预测精度最优,其模型的决定系数和模型拟合的决定系数分别为0.898和0.854,该模型对估算研究区内的SOM含量效果较好;综合比较了单波段模型和多波段模型的拟合精度,发现无论在单波段模型还是多波段模型一阶微分处理后的模型都具有更好的预测能力。(4)基于一阶微分多波段模型对研究区SOM进行反演,反演结果与实际情况相符合,对干旱区SOM含量制图提供了切实可行的方法和参考。 相似文献
10.
目前针对土壤重金属的高光谱反演方法大多集中在单一的研究区域或未考虑土壤类型对反演结果的影响,而土壤类型和成土因素的不同会对土壤属性参数的高光谱反演模型的普适性产生一定程度影响。该研究提出一种顾及土壤类型的重金属高光谱遥感反演方法,根据研究区土壤类型,从土壤样本的实验室光谱中提取对重金属起主要吸附作用的土壤光谱活性物质的特征谱段,分别建立基于土壤光谱活性物质特征谱段的重金属含量估算模型。使用改进的遗传算法(IGA)对特征谱段进行波段优选,使用偏最小二乘回归算法(PLSR)建模,使用决定系数(R2)、相对偏差(RPD)和预测均方根误差(RMSEP)三个指标对不同的建模方法进行评价。以湖南省郴州市东河流域铅锌矿矿区的黄壤和红壤样本数据为例,采集38个黄壤样本和35个红壤样本,从土壤样本的实验室光谱中提取对Zn起主要吸附作用的土壤有机质和黏土矿物的特征谱段,均采用IGA+PLSR方法进行建模。结果表明:不考虑土壤类型即利用全部土壤样本进行建模时,与全谱段建模结果相比,基于土壤有机质和黏土矿物特征谱段的重金属Zn含量反演精度的R2由0.624提升到0.... 相似文献
11.
艾比湖湿地自然保护区土壤盐分多光谱遥感反演模型 总被引:1,自引:0,他引:1
土壤盐分是衡量土壤质量的要素,也是作物生长发育的基本条件。因此,迫切地需要一种可以快速了解土壤盐分含量(SSC)的方法。针对艾比湖湿地自然保护区,基于Landsat8 OLI多光谱遥感影像,以该研究区36个土壤表层样品的盐分含量为数据源,选择相关性较好的多光谱遥感指数分析研究区土壤盐分分布状况,并将其分别与实测SSC构建线性、对数、二次函数模型,进而优选精度最高的模型来反演该研究区SSC。结果表明:(1)在多光谱遥感指数中,与SSC相关性最高的是增强型植被指数(EVI),其相关性范围为(-0.70~-0.67);其次是传统型植被指数(TVI),其范围为(-0.58~-0.46);土壤盐分指数(SI)与SSC的相关性最低,其范围为(-0.45~0.16),其中SI3和SI4与SSC均没有相关性。(2)将实测土壤盐分值所反演的分布图与EVI对比分析,发现在西北、正南方向的艾比湖湖边周围和东北方向盐池桥的SSC均较高,其EVI的值较低,说明通过该研究区实测土壤盐分值所反演的盐分分布图与EVI的空间分布结果较为一致,表明EVI对该地区土壤盐分具有一定的敏感性,能较好地反演SSC的空间分布;(3)分别将三种EVI与实测SSC建模分析比较,发现SSC与增强型比值植被指数(ERVI)所构建的二次函数模型最好;其验证集的决定系数(R2)为0.92,均方根误差(RMSE)为2.48,相对分析误差(RPD)为2.09,模型精度较高、稳定性较为可靠,相比之下,说明ERVI对该湿地自然保护区土壤盐分有更高的敏感性,可以用来预测该区域SSC,从而进行空间反演。在TVI中加入Landsat8多光谱遥感影像的b6和b7波段,得到EVI,以此来反演SSC是可行的,且比传统可见光和近红外波段所构建的植被指数反演效果更好。因此该研究不仅可以为遥感反演提供理论参考,而且对该地区SSC的定量估算和动态监测具有重要的意义,也可作为其他区域SSC预测反演的备选方案。 相似文献