首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Issa YM  Zayed SI 《Talanta》2006,69(2):481-487
New clobutinol (Clob) ion-selective polyvinyl chloride (PVC) membrane electrodes, based on the ion-associates of Clob with phosphotungstic acid or phosphomolybdic acid were prepared using dibutyl phthalate as plasticizing solvent. The electrodes were characterized in terms of membrane composition, temperature and pH. The sensors showed a near-Nernstian response over the concentration ranges (6.31 × 10−6)-(1.00 × 10−2) and (5.01 × 10−5)-(1.00 × 10−2) M in the case of clobutinol-phosphotungstate ((Clob)3-PT) applying batch and flow injection (FI) analysis, respectively, and (1.58 × 10−5)-(1.00 × 10−2) and (5.01 × 10−5)-(1.00 × 10−2) M in case of clobutinol-phosphomolybdate ((Clob)3-PM) for batch and FI analysis systems, respectively. The electrodes were successfully applied for the potentiometric determination of ClobCl in pharmaceutical preparation and urine in steady state and flow injection conditions. The electrodes exhibit good selectivity for Clob with respect to a large number of inorganic cations, sugars and amino acids.  相似文献   

2.
New ranitidine hydrochloride (RaCl)-selective electrodes of the conventional polymer membrane type are described. They are based on incorporation of ranitidine-tetraphenylborate (Ra-TPB) ion-pair or ranitidine-phosphotungstate (RaPT) ion-associate in a poly(vinyl chloride) (PVC) membrane plasticized with dioctylphthalate (DOP) or dibutylphthalate (DBP). The electrodes are fully characterized in terms of the membrane composition, solution temperature, and pH. The sensors showed fast and stable responses. Nernstian response was found over the concentration range of 2.0 x 10(-5) M to 1.0 x 10(-2) M and 1.0 x 10(-5) M to 1.0 x 10(-2) M in the case of Ra-TPB electrode and over the range of 1.03 x 10(-5) M to 1.00 x 10(-2) M and 1.0 x 10(-5) M to 1.0 x 10(-2) M in the case of Ra-PT electrode for batch and FIA systems, respectively. The electrodes exhibit good selectivity for RaCl with respect to a large number of common ions, sugars, amino acids, and components other than ranitidine hydrochloride of the investigated mixed drugs. The electrodes have been applied to the potentiometric determination of RaCl in pure solutions and in pharmaceutical preparations under batch and flow injection conditions with a lower detection limit of 1.26 x 10(-5) M and 5.62 x 10(-6) M at 25 +/- 1 degrees C. An average recovery of 100.91% and 100.42% with a relative standard deviation of 0.72% and 0.53% has been achieved.  相似文献   

3.
Novel PVC membrane electrodes for the determination of betaine ion based on the formation of betaine-tetraphenylborate (Be-TPB) and betaine-phosphotungstate (Be-PT) ion-exchangers as electroactive materials are described. The sensors show a fast, stable, near Nernstian response for 6.92 x 10(-6) to 7.94 x 10(-3) M and 1.0 x 10(-4) to 1.0 x 10(-2) M betaine hydrochloride (Be.Cl) in case of Be-TPB electrode applying batch and flow injection analysis (FIA), respectively, and 2.95 x 10(-5) to 2.26 x 10(-3) M and 3.16 x 10(-5) to 1.0 x 10(-2) M in case of Be-PT electrode for batch and FIA electrodes, respectively, at 25 degrees C over the pH range of 3.5-10 with a cationic slope of 60.2 and 59.1 mV decade(-1) and a fast potential response of < or =15 s. The lower detection limits are 7.94 x 10(-6) and 3.18 x 10(-5) M Be.Cl for Be-TPB and Be-PT electrodes, respectively. Selectivity coefficient data for some common inorganic cations, sugars, amino acids and the components other than betaine, of the mixed drug investigated show negligible interference. The electrodes have been applied to the direct potentiometric determination of betaine hydrochloride in water and in a pharmaceutical preparation under batch and FIA conditions. Potentiometric titrations of Be.Cl with NaTPB and PTA as titrants were monitored with the developed betaine electrodes as an end point indicator electrode. The determination of Be.Cl shows an average recovery of 100.8% with mean relative standard deviation of 0.61%. The effect of temperature on the electrodes was also studied.  相似文献   

4.
Carbon paste electrodes for pancuronium bromide was prepared based on ion association complexes of pancuronium bromide with sodium tetraphenylborate (NaTPB) or ammonium reineckate using dibutyl phthalate as solvent mediator and tetradodecylammonium tetrakis-(4-chlorophenyl)borate (ETH 500) as lipophilic additive. The sensors showed a near-Nernstian slope of 28.1 mV concentration decade(-1) at 25°C within the concentration range 6.31×10(-6)-1.00×10(-2) M in case of pancuronium-tetraphenylborate electrode and 26.6 mV concentration decade(-1) in the concentration range 5.66×10(-5)-1.00×10(-2) M in case of pancuronium-reineckate electrode. The sensors were successfully applied for the potentiometric determination of pancuronium bromide in pharmaceutical preparation and biological fluids in batch and flow injection conditions.  相似文献   

5.
New phenylpropanolamine hydrochloride (PPA.Cl)-selective electrodes of the conventional polymer membrane type, based on incorporation of phenylpropanolamine-tetraphenylborate (PPA-TPB) ion-pair or phenylpropanolamine-phosphotungstate (PPA-PT) ion-associate in a poly(vinyl chloride) (PVC) membrane plasticized with dioctylphethalate (DOP) or dibutylphethalate (DBP), have been constructed. The electrodes were fully characterized in terms of the membrane composition, temperature, and pH. The electrodes were applied to the potentiometric determination of PPA.Cl in pure solutions and in pharmaceutical preparations under batch and flow injection conditions. The sensors showed fast, stable, and Nernstian slope over the concentration ranges 1.0×10−5 to 8.91×10−3 M and 10−5 to 10−2 M in the case of PPA-TPB applying batch and flow injection analysis (FIA), respectively, and 5.01×10−6 to 1.25×10−3 M and 10−5 to 10−2 M in the case of PPA-PT for batch and FIA systems, respectively. The electrodes exhibited good selectivity for PPA.Cl with respect to a large number of inorganic cations, sugars, amino acids, and components other than phenylpropanolamine of the mixed drugs. The effect of temperature on the electrodes was also studied.  相似文献   

6.
Triprolidine (Trip) ion selective electrodes of three types: the conventional polymer membrane (I), graphite coated electrode (II) and carbon paste electrode (III), have been prepared, based on the ion pair of triprolidine hydrochloride with sodium tetraphenylborate. The electrodes exhibit a linear response with a mean calibration graph slope of 56.12, 55.00 and 54.32 mV decade(-1) at 25 degrees C for I, II and III, respectively, within the concentration ranges 1.96 x 10(-5) - 1.00 x 10(-2) M for I and 3.84 x 10(-5) - 1.00 x 10(-2) M for II and III. The detection limits are 1.13+/-0.13 x 10(-5), 1.70+/-0.06 x 10(-5) and 1.78+/-0.05 x 10(-5) M for the three electrodes, respectively. The change of pH within the ranges 4.85 - 8.75 and 4.70 - 8.50 for I and III, respectively, did not affect the electrode performance. The standard electrode potentials were determined at different temperatures and were used to calculate the isothermal coefficient of the electrode. The electrodes showed a very good selectivity for Trip with respect to a large number of inorganic cations and compounds. The standard addition method was applied to the determination of TripCl in pure solution, pharmaceutical preparations, and urine samples.  相似文献   

7.
Oh H  Choi EM  Jeong H  Nam KC  Jeon S 《Talanta》2000,53(3):535-542
New lipophilic tetraesters of calix[6]arene and calix[6]diquinone are investigated as cesium ion-selective ionophores in poly(vinyl chloride) membrane electrodes. For an ion-selective electrode based on calix[6]arene tetraester I, the linear response is 1x10(-6)-1x10(-1) M of Cs(+) concentrations. The selectivity coefficients for cesium ion over alkali, alkaline earth and ammonium ions are determined. The detection limit (log a (Cs (+))=-6.31) and the selectivity coefficient (log k (Cs (+),Rb (+))(pot )=-1.88) are obtained for polymeric membrane electrode containing calix[6]arene tetraester I.  相似文献   

8.
A rapid, simple, and accurate spectrophotometric method is presented for the determination of fluoxetine by batch and flow injection analysis methods. The method is based on fluoxetine competitive complexation reaction with phenolphthalein-beta-cyclodextrin (PHP-beta-CD) inclusion complex. The increase in the absorbance of the solution at 554 nm by the addition of fluoxetine was measured. The formation constant for fluoxetin-beta-CD was calculated by non-linear least squares fitting. Fluoxetine can be determined in the range 7.0 x 10(-6)-2.4 x 10(-4) mol l(-1) and 5.0 x 10(-5)-1.0 x 10(-2) mol l(-1) by batch and flow methods, respectively. The limit of detection and limit of quantification were respectively 4.13 x 10(-6) mol l(-1) and 1.38 x 10(-5) mol l(-1) for batch and 2.46 x 10(-5) mol l(-1) and 8.22 x 10(-5) mol l(-1) for flow method. The sampling rate in flow injection analysis method was 80+/-5 samples h(-1). The method was applied to the determination of fluoxetine in pharmaceutical formulations and after addition to human urine samples.  相似文献   

9.
Tzanavaras PD  Themelis DG 《The Analyst》2001,126(9):1608-1611
A new, rapid flow injection (FI) method is reported for the spectrophotometric determination of monofluorophosphate (MFP) ions in toothpastes. MFP ions are hydrolyzed on-line by alkalinephosphatase (APase) immobilized on a cellulose nitrate membrane, prior to injection in the FI system. The yielded orthophosphate ions are determined spectrophotometrically (lambda(max) = 690 nm) using the molybdenum blue approach. The chemical and FI variables that affected the enzymatic reaction were studied and optimized. A study of interferences was also carried out. The proposed method is very precise (s(r) = 0.7% at 1.0 x 10(-4) mol l(-1) MFP, n = 12), fast (sampling rate of 72 h(-1)) and allows the determination of MFP ions in the range of 4.0 x 10(-5) to 6.0 x 10(-4) mol l(-1) with a satisfactory 3sigma detection limit of 4.0 x 10(-6) mol l(-1). The application of the proposed FI method to toothpaste samples yielded accurate results (e(r) < 2.0%) compared with a potentiometric reference procedure.  相似文献   

10.
Five plastic membrane electrodes for the determination of dicyclomine hydrochloride (DcCl) were fabricated and fully characterized in terms of composition, life span, usable pH range, working concentration range and temperature. The membranes of these electrodes consist of dicyclominium-silicotungstate (Dc-ST), silicomolybdate (Dc-SM), phosphotungstate (Dc-PT), phosphomolybdate (Dc-PM) or tetraphenylborate (Dc-TPB) ion-associations dispersed in PVC matrix with dibutyl phthalate plasticizer. The electrodes showed near-Nernstian response over the concentration range of 4.0 × 10−6 to 1.0 × 10−2 M DcCl and applied to the potentiometric determination of dicyclominium ion in pharmaceutical preparations, serum, urine and milk in batch and flow injection (FI) conditions with average recoveries of 96.1-102.7% and relative standard deviation of 0.055-1.994%. The electrodes exhibit good selectivity for DcCl with respect to a large number of inorganic cations, organic cations, sugars and amino acids. The sensitivities of these electrodes are high enough to measure as low as 1.73 μg/ml of DcCl which permit the determination of the Ksp values of the ion-associates used. The proposed potentiometric methods offer the advantages of simplicity, accuracy, automation feasibility and applicability to turbid and colored sample solutions.  相似文献   

11.
A chemiluminescence (CL) method using flow injection (FI) was developed for the determination of uric acid based on the enhancement chemiluminescence intensity of luminol-hexacyanoferrate(III)-hexacyanoferrate(II) in the presence of cetyltrimethylammonium bromide and the uric acid species. The linear range was 7.0 x 10(-10) - 9.0 x 10(-7) M with a detection limit (3sigma) of 2.58 x 10(-10) M, which was about two orders of magnitude lower than those reported. The proposed method was used for the determination of uric acid in real samples.  相似文献   

12.
Wei Y  Oshima M  Motomizu S 《The Analyst》2002,127(3):424-427
Monitoring the removal of carbonate from alkali metal hydroxide (MOH, M = K, Na) solutions with calcium oxide (CaO) was studied using a newly developed method for the determination of trace amounts of total carbonate (TC) in alkaline solutions based on a flow injection (FI) technique coupled with a gas diffusion system. The optimized conditions of the FI system were as follows: the flow rate of each carrier, reaction solution (H2SO4) and receptor solution (Cresol Red, pH 8.9) was 0.25 ml min(-1), the sample size was 0.1 ml and the concentration of H2SO4 in the reaction solution was 0.09 M. The limit of detection of TC by the proposed method was 4 x 10(-7) M. The removal efficiency of carbonate was affected by the amount of CaO added, the shaking time of the solutions and the concentration of MOH. For 1 M NaOH and KOH solution, the removal efficiency of carbonate was about 99% and the concentration of residual carbonate was 4 x 10(-5) and 1.2 X 10(-4) M, respectively, when the amount of CaO added was 2 g l(-1) and the shaking time was 16 h.  相似文献   

13.
New chlordiazepoxide hydrochloride (Ch-Cl) ion-selective electrodes (conventional type) based on ion associates, chlordiazepoxidium-phosphomolybdate (I) and chlordiazepoxidium-phosphotungstate (II), were prepared. The electrodes exhibited mean slopes of calibration graphs of 59.4 mV and 60.8 mV per decade of (Ch-Cl) concentration at 25 degrees C for electrodes (I) and (II), respectively. Both electrodes could be used within the concentration range 3.16 x 10(-6)-1 x 10(-2) M (Ch-Cl) within the pH range 2.0-4.5. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficients of the electrodes, which were 0.00139 and 0.00093 V degrees C(-1) for electrodes (I) and (II), respectively. The electrodes showed a very good selectivity for Ch-Cl with respect to the number of inorganic cations, amino acids and sugars. The electrodes were applied to the potentiometric determination of the chlordiazepoxide ion and its pharmaceutical preparation under batch and flow injection conditions. Also, chlordiazepoxide was determined by conductimetric titrations. Graphite, copper and silver coated wires were prepared and characterized as sensors for the drug under investigation.  相似文献   

14.
New Plastic membrane ion-selective electrode for buspirone hydrochloride based on buspironium tetraphenylborate was prepared. The electrode exhibited mean slope of calibration graph of 58.4 mV per decade of BusCl concentration at 25 degrees C. The electrode can be used within the concentration range 6.3 x 10(-5) - 10(-2) M BusCl at a pH range of 2.5-7.0. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal temperature coefficient of the electrode, amounting to 0.00056 V degrees C(-1). The electrode showed a very good selectivity for BusCl with respect to a number of inorganic cations, sugars and amino acids. The electrode was applied to the potentiometric determination of the buspirone ion and its pharmaceutical preparation under batch and flow injection conditions. Also, buspirone was determined by conductimetric titrations. Graphite rod, copper and silver coated wire electrodes were prepared and characterized as sensors for the drug under investigation.  相似文献   

15.
Two reverse flow injection (FI) methods, using spectrophotometric detection, are proposed for the determination of ascorbic acid. Both methods are based on its reaction with the ethylenediaminetetraacetic acid-CoIII complex in a medium of 5% diethylamine. In the first method, using the peak-height FI technique, ascorbic acid is determined over the range from 2 x 10(-4) to 5 x 10(-3) mol dm-3 and in the second, using the peak-width FI method, the working range is extended (2 x 10(-3)-5 x 10(-2) mol dm-3). Both FI methods were applied to the determination of ascorbic acid in pharmaceuticals while the peak-height FI technique was also used to determine ascorbic acid in urine.  相似文献   

16.
Capillary zone electrophoresis (CE) under conditions of reversed polarity is used in conjunction with electrochemical detection (EC) at carbon fiber microcylinder electrodes for the selective and sensitive determination of uric acid in human blood serum. Comigration of anions with the electroosmotic flow is accomplished with reversed polarity and the buffer additive cetyltrimethylammonium bromide (CTAB) in a 2-(N-morpholino)ethanesulfonic acid (MES) buffer system, giving rise to rapid and sensitive analyses. Optimal buffer conditions (pH 7.0), detection potential (0.80 V vs. Ag/AgCl), and electrokinetic injection are employed to allow for maximal resolution and signal intensity. Amperometric end-column detection with a carbon fiber microcylinder electrode results in lower limits of detection for uric acid of about 25 nM (ca. 140 amol injected) without the need for decoupling. Linear calibration plots using uric acid standards in water and serum are obtained over a linear range from 5.00 x 10(-4) M to 2.50 x 10(-7) M. Uric acid concentrations obtained for human sera using the CE-EC approach described here are shown to compare favorably to the accepted laboratory values.  相似文献   

17.
The construction and general performance of novel potentiometric membrane ion selective electrodes for determination of papaverine hydrochloride has been described. They are based on the formation of the ion association complexes of papaverine (PA) with tetraphenylborate (TPB)(I) or tetrathiocyanate (TTC)(II) counter anions as electro-active material dispersed in a PVC matrix. The electrodes show fast, stable, near Nernstian response for 1 x 10(-2) to 6 x 10(-5) M and 1 x 10(-2) to 1 x 10(-5) M for PA-TPB and PA-TTC respectively at 25 degrees C over the pH range of 3-5.0 with a cationic slope of approximately 56.5 +/- 0.5 mV/decade for both sensors respectively. The lower detection limit is 4 x 10(-5) and 8 x 10(-6) M for PA- I and PA-II respectively with fast response time ranging from 20-45 sec. Selectivity coefficients for PA relative to a number of interfering substances were investigated. There is a negligible interference from the studied cations, anions, and pharmaceutical excipients. The determination of 4.0- 3000.0 microg/ml of PA in aqueous solutions shows an average recovery of 99.1% and a mean relative standard deviation of 1.4 at 100microg/ml. The direct determination of PA in some formulations (Vasorin injection) gave results that compare favorably with those obtained using the British Pharmacopoeia method. Potentiometric titration of PA with sodium tetraphenylborate and potassium thiocyanate as titrants utilizing the papaverine electrode as an end point indicator electrode has been carried out.  相似文献   

18.
D Leech  J Wang  M R Smyth 《The Analyst》1990,115(11):1447-1450
The application of ruthenium dioxide (RuO2) modified electrodes to the electrocatalytic detection of the saccharide-related antibiotics streptomycin, novobiocin and neomycin, at low fixed potentials, was investigated. The RuO2-modified graphite - epoxy composite electrodes give extremely stable and reproducible catalytic oxidation currents for these antibiotics at potentials as low as +0.2 V (versus Ag - AgCl). Rapid quantification at the micromolar level is therefore possible. Standard calibration graphs for streptomycin and neomycin yielded slopes of 4.43 and 0.08 nA microM-1 over the linear ranges of 1.5 x 10(-6) - 2.5 x 10(-4) and 1 x 10(-5) - 2 x 10(-3) M, respectively. Owing to its catalytic oxidation by the RuIII - RuIV couple, rather than the RuIV - RuVI transition (which catalyses the oxidation of streptomycin and neomycin), novobiocin could be detected at a lower (+0.2 V) potential, with a sensitivity of 1.31 nA microM-1. Detection limits of 1.5, 6.0 and 10 microM were obtained for streptomycin, novobiocin and neomycin, respectively. These catalytic surfaces can be renewed (by polishing), with a surface-to-surface reproducibility of 6.5% for the detection of 5 x 10(-5) M streptomycin. The analytical application of RuO2-modified carbon paste electrodes to the analysis of these antibiotics by flow injection was investigated, with a view to liquid chromatographic separation with electrochemical detection applications.  相似文献   

19.
The epoxy-impregnated graphite tube electrode bulk modified with 2-mercaptobenzoxazole, employed in a wall-jet configuration, was found to be useful for the continuous flow and flow injection stripping voltammetric determinations of AgI, HgII and BiIII. For continuous flow, detection limits for AgI, HgII and BiIII were 1.8 × 10−10 M, 1.9 × 10−9 M and 9.5 × 10−9 M, respectively (10 min accumulation, S/N = 3). Precisions for 5.00 × 10−9 M AgI, 1.00 × 10−8 M HgII and 1.00 × 10−7 M BiIII were 10.5%, 5.77 % and 7.90% (relative standard deviations, n = 6), respectively. In the case of flow injection stripping, with a 500 μL injection loop, detection limits of 0.59 ng, 2.0 ng and 120 ng were obtained for AgI, HgII and BiIII, respectively (S/N = 3). Selected metal ions, inorganic and organic substances were investigated for interferences. The electrode was tested with a certified sample and then applied to the determinations of the metal ions in a urine and a sea-water sample.  相似文献   

20.
An amperometric multisite detection flow injection analysis (FIA) system was developed for sequential determination of 2 analytes with a single sample injection and single detector. Tubular composite carbon electrodes with an inner diameter similar to that of the FIA manifold tubing were constructed so that measurements could be made without impairing the sample plug hydrodynamic characteristics. The electrochemical behavior of the tubular voltammetric cell in a low-dispersion FIA manifold and the behavior of the FIA system incorporating this type of voltammetric cell intended for multisite detection were evaluated by performing measurements with potassium hexacyanoferrate(II). Feasibility of the approach was demonstrated in the sequential determination of salicylic and acetylsalicylic acids in pharmaceutical products at a fixed potential of 0.98 V. The system allows sequential determination of salicylic acid concentrations ranging from 1.0 x 10(-5) to 5.0 x 10(-5) M and acetylsalicylic acid concentrations between 1.0 x 10(-3) and 5.0 x 10(-3) M with good precision on both detection sites and with relative standard deviations (RSDs) > or = 1.5% (n = 10) and 2.1% (n = 10), respectively. A comparison of these results with those of the U.S. Pharmacopeia procedure showed RSDs <5.0 and 1.0% for salicylic acid and acetylsalicylic acid, respectively. The proposed method enables 15 determinations per hour, which corresponds to the analysis of approximately 8 samples per hour. The detection limits of the methodology were approximately 3.5 x 10(-6) and 1.1 x 10(-5) M, respectively, for the first and second monitoring sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号