首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnS nanoparticles were synthesized in four component "water in oil" microemulsions formed by a cationic surfactant (cetyltrimethylammonium bromide, CTAB), a cosurfactant (pentanol or butanol), n-hexane and water. The effect of various parameters (nature of cosurfactant, water/surfactant W(0), and alcohol/surfactant P(0)) on the formation and stability of ZnS nanoparticles was investigated thoroughly. UV-Vis spectroscopy was employed to directly follow the formation of ZnS systems in the microemulsions. Thus, particle size was estimated from the position of the first excitonic transition by employing an approximate finite-depth equation and an empirical correlation, giving average diameters in the ranges 2.3-2.5 and 3.0-3.5nm, respectively. Stable ZnS nanoparticles were obtained by employing low water and high cosurfactant amounts. This suggests that at high concentration the cosurfactant molecules act as capping agents on the surface of the inverse micelles, while low water amounts are needful to obtain water droplets with a radius close to that of the interfacial film spontaneous curvature. HRTEM analysis showed that the samples are formed by a few crystalline ZnS nanoparticles of spherical shape, embedded in and amorphous organic matrix, with a coherent scattering domain between 2 and 4nm.  相似文献   

2.
以辛基酚聚氧乙烯醚(OP-10)为表面活性剂, 二甲基甲酰胺(DMF)/水为溶剂, 用沉淀法制备了纳米球、纳米棒、纳米片等多种形貌可控的ZnS纳米晶, 并且用透射电子显微镜、X射线衍射、紫外吸收、荧光光谱对其进行了表征, 并且分析了其形貌转变机理.  相似文献   

3.
Nanoparticles of zinc sulfide doped with Ce3+ have been synthesized through a simple chemical precipitation method utilizing optimum dopant concentration (1.5 g) and employing various concentrations of polyvinylpyrrolidone (PVP, M.W: 40,000) as capping agent. The optical properties of the synthesized products were studied by UV–Vis absorption and photoluminescence measurements. The phase and size of the products were predicted by X-ray diffraction data. The existence of functional groups in the synthesized products was identified by Fourier transform infrared spectroscopy. Field emission scanning electron microscope results of Ce3+ doped ZnS show a uniform growth pattern of the nanorods with flowerlike structure. However, on surfactant assisted Ce3+ doped ZnS nanoparticles, the morphology of the products was changed from rod to spherical particles. The morphologies of the uncapped and PVP capped ZnS nanocrystals were confirmed by high resolution transmission electron microscopy.  相似文献   

4.
Quantum-sized ZnS nanocrystals with quasi-spherical and rod shapes were synthesized by the aging reaction mixtures containing diethylzinc, sulfur, and amine. Uniform-sized ZnS nanorods with the average dimension of 5 nm x 21 nm, along with a small fraction of 5 nm-sized quasi-spherical nanocrystals, were synthesized by adding diethylzinc to a solution containing sulfur and hexadecylamine at 125 degrees C, followed by aging at 300 degrees C. Subsequent secondary aging of the nanocrystals in oleylamine at 60 degrees C for 24 h produced nearly pure nanorods. Structural characterizations showed that these nanorods had a cubic zinc blende structure, whereas the fabrication of nanorods with this structure has been known to be difficult to achieve via colloidal chemical synthetic routes. High-resolution TEM images and reaction studies demonstrated that these nanorods are formed from the oriented attachment of quasi-spherical nanocrystals. Monodisperse 5 nm-sized quasi-spherical ZnS nanocrystals were separately synthesized by adding diethylzinc to sulfur dissolved in a mixture of hexadecylamine and 1-octadecene at 45 degrees C, followed by aging at 300 degrees C. When oleic acid was substituted for hexadecylamine and all other procedures were unchanged, we obtained 10 nm-sized quasi-spherical ZnS nanocrystals, but with broad particle size distribution. These two different-sized quasi-spherical ZnS nanocrystals showed different proportions of zinc blende and wurtzite crystal structures. The UV absorption spectra and photoluminescence excitation spectra of the 5 nm ZnS quasi-spherical nanocrystals and of the nanorods showed a blue-shift from the bulk band-gap, thus showing a quantum confinement effect. The photoluminescence spectra of the ZnS nanorods and quasi-spherical nanocrystals showed a well-defined excitonic emission feature and size- and shape-dependent quantum confinement effects.  相似文献   

5.
Preparation of ZnS nanorods by a liquid crystal template   总被引:2,自引:0,他引:2  
ZnS nanorods were synthesized in lamellar liquid crystals of C(12)E(4) by mixing zinc ions and thioacetamide (TAA) solution. The effects of the reactant concentration and the surfactant/water molar ratio in the liquid crystal system on the morphology and size of the ZnS particles were investigated. The prepared ZnS particles are regular nanorods having a width of about 60 nm and a length of about 80-380 nm, with a largest aspect ratio of about 6.3. A lamellar liquid crystal templating mechanism has been proposed to interpret the experimental results.  相似文献   

6.
A variety of nearly monodisperse semiconductor nanocrystals, such as CdS, ZnS, and ZnS:Mn, with controllable aspect ratios have been successfully prepared through a facile synthetic process. These as-prepared nanocrystals were obtained from the reactions between metal ions and thioacetamide by employing octadecylamine or oleylamine as the surfactants. The effects of reaction temperature and time, ratios of thioacetamide to inorganic precursors, and the reactant content on the size and crystal purity of the nanorods, have been systematically investigated. The optical properties and the formation mechanism of the nanorods have also been discussed. For the next biolabel applications, these hydrophobic nanocrystals have also been transferred into hydrophilic colloidal spheres by means of an emulsion-based bottom-up self-assembly approach.  相似文献   

7.
Silver and silver iodide nanocrystals have been synthesized in the water-in-CO(2) reverse microemulsions formed by the commonly used surfactant, sodium bis(2-ethylhexyl)sulfosuccinate (AOT), in the presence of 2,2,3,3,4,4,5,5-octafluoro-1-pentanol as cosurfactant. The nanometer-sized aqueous domains in the microemulsion cores not only act as nanoreactors, but the surfactant interfacial monolayer also helps the stabilization of the metal and semiconductor nanoparticles. The transmission electron microscopy results show that silver and silver iodide nanocrystals with average diameters of 6.0 nm (standard deviation, SD=1.3 nm) and 5.7 nm (SD=1.4 nm), respectively, were formed. The results indicate that the method can be utilized as a general and economically viable approach for the synthesis of metal and semiconductor quantum dots in environmentally benign supercritical carbon dioxide.  相似文献   

8.
We present a surfactant-assisted solvothermal approach for the controllable synthesis of a PbS nanocrystal at low temperature (85 degrees C). Nanotubes (400 nm in length with an outer diameter of 30 nm), bundle-like long nanorods (about 5-15 mum long and an average diameter of 100 nm), nanowires (5-20 mum in length and with a diameter of 20-50 nm), short nanorods (100-300 nm in length and an axial ratio of 5-10), nanoparticles (25 nm in width with an aspect ratio of 2), and nanocubes (a short axis length of 10 nm and a long axis length of 15 nm) were successfully prepared and characterized by transmission electron microscopy, scanning electron microscopy, and powder X-ray diffraction pattern. A series of experimental results indicated that several experimental factors, such as AOT concentration, ratio of [water]/[surfactant], reaction time, and ratio of the reagents, play key roles in the final morphologies of PbS. Possible formation mechanisms of PbS nanorods and nanotubes were proposed.  相似文献   

9.
The interaction between organic molecules and the surface of nanoparticles (NPs) strongly affects the size, properties and applications of surface-modified metal sulfide semiconductor nanocrystals. From this viewpoint, we compared the influence of cationic surfactants with various chain lengths and anionic surfactants with different head groups, as surface modifiers during synthesis of ZnS NPs in aqueous medium. The surfactant adsorbs on the surface of the particles as micelle-like aggregates. These aggregates can form even at the concentration lower than critical micelle concentration (cmc) due to interaction between the polar groups and the NPs. The nature of interaction depends specifically on the surfactant polar group. The ability of surfactant to form the micelle-like aggregates on the surface of the NPs correlates with their cmc. This leads to the fact that the surfactant with longer tail stabilizes the NPs better since its cmc is lower. The adsorption of the surfactant on the NPs also stabilizes them by the change of their charge which is in accordance with the correlation of zeta potential with the particles stability. The energetics of surface states generating interesting photoluminescence (PL) properties in ZnS NPs has been governed by the nature of surfactant molecules. In general, the size, structure, and stability of the ZnS NPs can be controlled by the choice of suitable surfactant.  相似文献   

10.
Chen X  Xu H  Xu N  Zhao F  Lin W  Lin G  Fu Y  Huang Z  Wang H  Wu M 《Inorganic chemistry》2003,42(9):3100-3106
The high-temperature (over 1020 degrees C) polymorph of ZnS, wurtzite ZnS, has been successfully prepared through a low-temperature (180 degrees C) hydrothermal synthesis route in the presence of ethylenediamine (en). The effects of en concentrations, reactant concentrations, reaction temperatures, and reaction times on crystal structures and shapes of ZnS have been investigated. We have demonstrated that the wurtzite ZnS showing rodlike morphology can be kinetically stabilized in the presence of en, especially at a high reactant concentration under appropriate hydrothermal conditions. Besides phase evolution of ZnS from hexagonal to cubic, morphological transformation from nanorods to nanograins has also been observed in the present investigation. Nanograins of phase-pure cubic ZnS, the thermodynamically stable polymorph, are easily prepared, and no hexagonal ZnS nanorods are detected in "pure" water, i.e., in the absence of en molecules. The above investigations indicate that the controlled fabrication of wurtzite ZnS nanorods is due to a mediated generation of the lamellar phase, ZnS.0.5en, a covalent organic-inorganic network based on ZnS slabs, and to its subsequent thermolysis in aqueous solution. The controlled growth of wurtzite ZnS nanorods and sphalerite ZnS nanograins provides us an opportunity to structurally modulate physical properties. These wurtzite ZnS nanorods display narrower and stronger blue emission than sphalerite ZnS nanograins.  相似文献   

11.
In this work, we report a facile hydrothermal method for the preparation of three dimensional hollow ZnS nanostructures, using Zinc bis(salicyle aldehitato), Zn(Sal)2, thioacetamide (TAA) and thioglycolic acid (TGA) as Zn2+, sulfur source and capping agent, respectively. The ZnS solid and hollow sphere was produced from the self-assembly of nanoparticles with diameters of 11 ± 2 nm with TGA and TGA, TAA, respectively. Furthermore, with changing zinc precursor from Zn(Sal)2 to zinc acetate [Zn(OAC)2], ZnS nanorods were obtained. The products were characterized by XRD, SEM, TEM, selected area electron diffraction, and FT-IR spectra. The influence of surfactant (Polyethylene glycol) on the morphology of the products was also investigated. Possible formation mechanism and optical properties of these architectures were also reported.  相似文献   

12.
三元添加剂水溶液体系合成亚微米硫化锌空心球   总被引:4,自引:0,他引:4  
利用仿生合成方法,通过加入一定量的引发剂使甲基丙烯酸原位聚合,在聚乙二醇(PEG)、聚甲基丙烯酸(PMAA)和十二烷基硫酸钠(SDS)的三元添加剂混合溶液体系中控制了合成硫化锌晶体,提出了一种简单易行的合成硫化锌空心球的新方法.采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线粉末衍射(XRD)及紫外吸收光谱等手段对合成样品的形貌、结构及性能进行了表征.TEM结果显示,ZnS空心球的直径约为300~400nm,其壳层的厚度约为50nm.SEM结果显示,空心球的外壳是由初级纳米粒子定向熔合排列形成的蠕虫状结构紧密组装而成.由于相应的胶束结构的改变,表面活性剂SDS浓度的变化明显改变了ZnS产物的形貌,在较高浓度的SDS溶液中得到了ZnS片状晶体的球形聚集体.利用核-壳机理初步解释了空心球结构的形成过程.  相似文献   

13.
Small and monodisperse ZnS hollow nanospheres with outer diameter ranging from 60 to 70 nm and wall thickness of 15-20 nm were fabricated in a large scale by a simple surfactant polyethylene glycol (PEG) assisted method. The diameter and the wall thickness of the hollow nanospheres could be controlled by manipulating the amount of PEG and the aging time, respectively. Moreover, the wall of these hollow nanospheres is very compact. The product was characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectrum and fluorescence spectroscopy. The photocatalytic activity of as-prepared ZnS hollow nanospheres was also evaluated by using methyl orange (MO) as a model organic compound and the result revealed that their photocatalytic activity is a little lower than that of Degussa P25 TiO(2) but better than that of ZnS nanocrystals prepared by literature method. Furthermore, a rational mechanism to the formation and evolution of the products is proposed.  相似文献   

14.
The low-temperature (368 K) synthesis of silicalite-1 nanocrystals in anionic microemulsions is reported. In the presence of AOT/isooctane mixtures silicalite-1 nanocrystals can be formed that are coffin-shaped and approximately 100 x 40 x 200 nm in size. This is in contrast to samples made without the microemulsion under the same conditions where irregular spherical particles approximately 100 nm in diameter are formed. The current work shows that, in contrast to previous work in this area, the anionic microemulsions cannot stabilize colloidal silica due to the strong repulsive electrostatic forces between the anionic silicate species and the surfactant headgroup. The crystal morphology of the silicalite-1 obtained is also shown to be sensitive to the surfactant identity as syntheses using SDS/heptane/butanol mixtures lead to different morphologies. It is also possible to uncouple zeolite nucleation from growth in these systems. This was demonstrated by adding a solution containing 25 nm silicalite-1 nanocrystals to the AOT/isooctane mixture, which leads to large micron-sized spheres of silicalite-1 containing large mesopores. This report demonstrates that anionic microemulsions lead to fundamentally different crystal habits than the nonionic or cationic microemulsions investigated previously. The future outlook for the use of microemulsion-mediated zeolite growth is also discussed.  相似文献   

15.
Zhang H  Huang J  Zhou X  Zhong X 《Inorganic chemistry》2011,50(16):7729-7734
High-quality Bi(2)S(3) discrete single-crystal nanosheets with orthorhombic structure have been synthesized through the thermal decomposition of a single-source precursor, Bi(S(2)CNEt(2))(3), in amine media. The morphology evolution reveals that the Bi(2)S(3) nanosheets are developed through the assembly of nanorods, and an attachment-recrystallization growth mechanism is proposed for the formation of nanosheets with the use of nanorods as building blocks. High-resolution transmission electron microscopy studies reveal that the nanosheets have the largest exposed surface of (100) facets. The effects of experimental variables, such as the reaction temperature, time, precursor concentration, and media, on the morphology of the obtained nanocrystals have been systematically investigated in which the amine has served as the solvent, surfactant, and electron donor.  相似文献   

16.
Water-soluble Mn2+-doped ZnS nanocrystals surface capped with polyethylene glycol(expressed as PEG-ZnS:Mn2+) were synthesized in aqueous solution with PEG as surface modifier without ligand exchange.The particles were obtained via chemical precipitation method at 100 ℃ with an average diameter of 3 nm and a zinc blende structure.The PEG modified on the surface of PEG-ZnS:Mn2+ nanocrystals rendered the nanocrystals water soluble and biocompatible.And the PEG-ZnS:Mn2+ nanocrystals have the potential application in molecular assembly and biological fluorescence analysis.The effects of the Mn2+ concentration,stabilizer concentration,and synthesis time on the photoluminescence(PL) intensity of ZnS:Mn2+ QDs were also investigated.  相似文献   

17.
微乳辅助的溶剂热法合成磷酸钐纳米棒   总被引:1,自引:0,他引:1  
自1991年碳纳米管被发现以来,一维纳米材料以其独特的电、磁、光学和机械性质以及在纳米器件和功能材料上的巨大应用潜力而引起全世界的广泛关注,人们通过模板法、溶胶-凝胶法、水热法及微乳液法等多种方法合成了一系列一维纳米材料,其中微乳液法是近几年来兴起的较有发展前景的纳米材料的合成方法,微乳液是由油相、水相、表面活性剂和助表面活性剂组成的均匀稳定的体系,水相在表面活性剂和助表面活性剂的作用下均匀地分散在油相中,  相似文献   

18.
混合表面活性剂微乳状液的形成和相行为研究进展   总被引:23,自引:0,他引:23  
讨论了单一表面活性剂,混合表面活性剂,助溶剂等对油/水微乳状液的形成和相行为的影响。对混合表面活性剂微乳状液的形成和相行为研究工作进行了归纳和总结,重点分析了正负离子表面活性剂微乳状液的相行为和表面活性剂微乳状液的相行为和表面活性剂效率,讨论了微乳状液形成的影响因素,并提出了这一研究领域可能的发展前景。  相似文献   

19.
Cellulose nanocrystals (CNC) isolated from bleached bagasse pulp were modified with a second-generation isocyanate dendron (G2-dendron) to prepare dendronized cellulose nanocrystals (DCN). Transmission electron microscopy (TEM), elemental analysis for nitrogen, Fourier transform infrared (FTIR) and 13C magic angle spinning nuclear magnetic resonance (13C MAS NMR) proved occurrence of the modification of cellulose nanocrystals surfaces. The dendronized cellulose nanocrystals were used as templates for formation of ZnS and CdS quantum dots with uniform diameter at low temperature in water. The prepared DCN/QDs were highly soluble in water. TEM images showed that the size of the prepared quantum dots was about 5 nm in diameter. UV-Visible and fluorescence spectroscopy showed absorption and emission at wavelength values lower than that reported for bulk ZnS and CdS.  相似文献   

20.
A simple approach to control the self‐assembly of ZnS nanocrystals into well‐defined, uniform, three‐dimensional, micrometer‐scale, solid ellipsoidal structures with rattle‐type, multishelled, and hollow architectures is presented. There is no surfactant or small molecule to assist the self‐assembly of the nanocrystals. A possible mechanism of the controlled self‐assembly is proposed. The growth process can be divided into two stages: 1) the formation of ellipsoidal architectures via oriented aggregation, the growth kinetics of which is primarily attributed to the charge–charge, charge–dipole, and dipole–dipole interactions of preformed ZnS nanocrystals; and 2) Ostwald ripening, which results in multishelled, rattle‐type, and hollow structures. This self‐assembly concept is also applicable to other metal sulfides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号