首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Chéret 《Shock Waves》1999,9(5):295-299
The 20th century saw the rapid development of quantum mechanics and micro-scales physics. However, classical mechanics did not lose any interest, and did not cease setting severe enigmas. Among them lies detonation, observed and measured since Berthelot (1881), but whose modeling required nearly hundred years of effort. Following the fashion of celebrations, we could say that the publication by Chapman in 1899 is a reason for rewriting, in modern terms, the main facts of past century: enhancing the few brilliant steps and also mentioning their sluggish diffusion, which arises from linguistic and national fractures within the scientific world and also reflects scientists' great reluctancy to recognize and overcome the intrinsic uncertainties of modeling. Received 19 April 1999 / Accepted 27 May 1999  相似文献   

2.
Fundamentals of rotating detonations   总被引:17,自引:0,他引:17  
A rotating detonation propagating at nearly Chapman–Jouguet velocity is numerically stabilized on a two-dimensional simple chemistry flow model. Under purely axial injection of a combustible mixture from the head end of a toroidal section of coaxial cylinders, the rotating detonation is proven to give no average angular momentum at any cross section, giving an axial flow. The detonation wavelet connected with an oblique shock wave ensuing to the downstream has a feature of unconfined detonation, causing a deficit in its propagation velocity. Due to Kelvin–Helmholtz instability existing on the interface of an injected combustible, unburnt gas pockets are formed to enter the junction between the detonation and oblique shock waves, generating strong explosions propagating to both directions. Calculated specific impulse is as high as 4,700 s.   相似文献   

3.
Behavior of detonation waves at low pressures   总被引:1,自引:0,他引:1  
With respect to stability of gaseous detonations, unsteady behavior of galloping detonations and re-initiation process of hydrogen-oxygen mixtures are studied using a detonation tube of 14 m in length and 45 mm i.d. The arrival of the shock wave and the reaction front is detected individually by a double probe combining of a pressure and an ion probe. The experimental results show that there are two different types of the re-initiation mechanism. One is essentially the same as that of deflagration to detonation transition in the sense that a shock wave generated by flame acceleration causes a local explosion. From calculated values of ignition delay behind the shock wave decoupled from the reaction front, the other is found to be closely related with spontaneous ignition. In this case, the fundamental propagation mode shows a spinning detonation. Received 10 March 1997 / Accepted 8 June 1997  相似文献   

4.
Oblique detonation stability was studied by numerically integrating the two-dimensional, one-step reactive Euler equations in a generalized, curvilinear coordinate system. The integration was accomplished using the Roe scheme combined with fractional stepping; nonlinear flux limiting was used to prevent unphysical solution oscillations near discontinuities. The method was verified on one- and two-dimensional flows with exact solutions, and its ability to correctly predict one-dimensional detonation stability boundaries was demonstrated. The behavior of straight oblique detonations attached to curved walls was then considered. Using the exact, steady oblique detonation solution as an initial condition, the numerical simulation predicted both steady and unsteady oblique detonation solutions when a detonation parameter known as the normal overdrive, , was varied. For a standard test case with a specific heat ratio of , a dimensionless activation energy of , and dimensionless heat release of , an oblique detonation with a constant dimensionless component of velocity tangent to the lead shock, , underwent transition to unstable behavior at . This is slightly higher than the threshold of predicted by one-dimensional theory; thus, the two-dimensionality renders the flow slightly more susceptible to instability. Received 4 August 1996 / Accepted 5 March 1996  相似文献   

5.
The inviscid equations of motion for the flow at the downstream side of a curved shock are solved for the shock–normal derivatives. Combining them with the shock–parallel derivatives yields gradients and substantial derivatives. In general these consist of two terms, one proportional to the rate of removal of specific enthalpy by the reaction, and one proportional to the shock curvature. Results about the streamline curvature show that, for sufficiently fast exothermic reaction, no Crocco point exists. This leads to a stability argument for sinusoidally perturbed normal shocks that relates to the formation of the structure of a detonation wave. Application to the deflection–pressure map of a streamline emerging from a triple shock point leads to the conclusion that, for non–reacting flow, the curvature of the Mach stem and reflected shock must be zero at the triple point, if the incident shock is straight. The direction and magnitude of the gradient at the shock of any flow quantity may be written down using the results. The sonic line slope in reacting flow serves as an example. Extension of the results – derived in the first place for plane flow – to three dimensions is straightforward. Received 12 February 1997 / Accepted 10 June 1997  相似文献   

6.
A modification to the Forchheimer-Brinkman equation, for the modelling of high speed flow of a compressible fluid in a dense saturated porous medium, is proposed. The modified equation is applied to a flow in which choking can occur.  相似文献   

7.
This paper presents results from an experimental study of transmission of gaseous detonation waves through various granular filters. Spherical glass beads of 4 and 8 mm diameter and crushed rock of 7.5 mm volume averaged diameter were used as filter material. Varying the initial pressure of the detonating gas mixture controlled the detonation cell size. Dilution with argon was used to vary the detonation cell regularity. The complete range from almost no detonation velocity deficit to complete extinction of the combustion wave was observed. The existing correlation for gaseous detonation velocity deficit where is the critical diameter for the gaseous detonation and is the pore size, is found to be applicable for both smooth spherical particles and irregular crushed rock when considering irregular detonation structures. Soot films and pressure measurements show that as the detonation cell size is increased, reinitiation of a reanular filter until it finally no longer occurs at . Complete extinction of the combustion wave occurs at . These two limits appear to be about the same for irregular and regular detonation cell structures. For irregular structures without argon dilution, can be found for detonation wave failure, and can be found for complete extinction of the combustion wave. For argon dilution these limits are changed to and , respectively. The data are a bit scarce as a basis for proposing a new correlation for regular structures, but as a first approximation log is suggested for regular structures. The detonation or combustion wave is found to approach a constant velocity in the granular filter if not extinguished. Received 31 October 2001 / Accepted 15 July 2002 Published online 4 November 2002 Correspondence to: T. Slungaard (e-mail: slung@maskin.ntnu.no) An abridged version of this paper was presented at the 18th Int. Colloquium on the Dynamics of Explosions and Reactive Systems at Seattle, USA, from July 29 to August 3, 2001  相似文献   

8.
In this study, the idealized two-dimensional detonation cells were decomposed into the primary units referred to as sub-cells. Based on the theory of oblique shock waves, an analytical formula was derived to describe the relation between the Mach number ratio through triple-shock collision and the geometric properties of the cell. By applying a modified blast wave theory, an analytical model was developed to predict the propagation of detonation waves along the cell. The calculated results show that detonation wave is, first, strengthened at the beginning of the cell after triple-shock collision, and then decays till reaching the cell end. The analytical results were compared with experimental data and previous numerical results; the agreement between them appears to be good, in general. Received 13 February 2001 / Accepted 2 August 2001  相似文献   

9.
本文介绍了高参数航空涡轮制冷机用高速气体轴承研制中的部分工作。在论述工作环境条件苛刻的这类制冷机中用气体轴承替代滚动轴承的必要性、可行性和特殊性的基础上,叙述了研制这类气体轴承时在设计、选材、加工和调试等方面完成的多项特殊试验以及气体轴承改装产品的航空环境适应性试验和应用概况。  相似文献   

10.
The welding heat source models and the plastic tension zone sizes of a typical weld joint involved in the double floor structure of high speed train under different welding parameters were calculated by a thermal-elastic-plastic FEM analysis based on SYSWELD code.Then,the welding distortion of floor structure was predicted using a linear elastic FEM and shrinkage method based on Weld Planner software.The effects of welding sequence,clamping configuration and reverse deformation on welding distortion of floor structure were examined numerically.The results indicate that the established elastic FEM model for floor structure is reliable for predicting the distribution of welding distortion in view of the good agreement between the calculated results and the measured distortion for real double floor structure.Compared with the welding sequence,the clamping configuration and the reverse deformation have a significant influence on the welding distortion of floor structure.In the case of30 mm reverse deformation,the maximum deformation can be reduced about 70%in comparison to an actual welding process.  相似文献   

11.
This paper reports a preliminary experiment with a free-flight range which was designed to be able to be driven by means of a sort of fast-acting valve. The notable characteristics pertinent to this type of range is the pliancy of operation and also the wide coverage of flight speed from the high subsonic to the high supersonic range. For both spherical and vehicle models, flight tests were conducted with shadowgraph observations and flight speed measurements in order to examine the capability of this type of facility.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

12.
应力可靠性预测对高速列车车体的安全设计非常重要.本文采用国际焊接学会推荐标准预测高速列车车体关键部位应力,通过热点应力法对应力集中部位表面应力进行外推.计算结果表明通过参考点外推得到的热点应力总是明显小于有限元计算的结果,并且更接近于实验值.采用两点外推法或三点外推法计算结果的差别很小.  相似文献   

13.
We present an overview of the diagnostic methods used in shock-tube investigations of mixing induced by Richtmyer–Meshkov instability. The different diagnostic techniques are first briefly presented, and then reviewed in a simple single table, which lists their advantages and disadvantages, their technological characteristics and domain of validity, the physical parameters measured, the laboratory in which they were developed and an assessment of their mean cost. Received 19 November 1997 / Accepted 3 March 1998  相似文献   

14.
The paper deals with a scalar wave equation of the form where is a Prandtl–Ishlinskii operator and are given functions. This equation describes longitudinal vibrations of an elastoplastic rod. The mass density and the Prandtl–Ishlinskii distribution function are allowed to depend on the space variable x. We prove existence, uniqueness and regularity of solution to a corresponding initial-boundary value problem. The system is then homogenized by considering a sequence of equations of the above type with spatially periodic data and , where the spatial period tends to 0. We identify the homogenized limits and and prove the convergence of solutions to the solution of the homogenized equation. Received June 17, 1999  相似文献   

15.
When a high speed train enters into a tunnel, the aerodynamic forces severely change and, consequently, the stability and performance significantly deviate from the value of design point which is usually set at cruising speed on the plain ground. The compression wave is also generated ahead of the train due to the piston-like action of tunnel entry motion. The present work is to understand the flow field such as variation of aerodynamic forces and generation of compression wave during tunnel entry motion by applying three-dimensional unsteady Navier–Stokes equation solver. To account for the relative motion of stationary tunnel and moving train, the sliding multi-block method has been implemented.  相似文献   

16.
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.  相似文献   

17.
We give an overview on the usage of computer simulations in industrial turbulent dispersed multiphase flows. We present a few examples of industrial flows: bubble columns and bubbly pipe flows, stirred tanks, cyclones, and a fluid catalytic cracking unit. The fluid catalytic cracking unit is used to illustrate the complexity of the physical phenomena involved, and the possibilities and limitations of the different approaches used: Eulerian–Lagrangian (particle-tracking) and Eulerian–Eulerian (two-fluid). In the first approach, the continuous phase is solved using either RANS simulations (Reynolds-Averaged Navier–Stokes simulations) or DNS/LES (Direct Numerical Simulations/Large-Eddy Simulations), and the individual particles are tracked. In the second approach, the dispersed phase is averaged, leading to two sets equations, which are quite similar to the RANS equations of single-phase flows. The Eulerian–Eulerian approach is the most commonly used in industrial applications, however, it requires a significant amount of modelling. Eulerian–Lagrangian RANS can be simpler to use; in particular in situations involving complex boundary conditions, polydisperse flows and agglomeration/breakup. The key issue for the success of the simulations is to have good models for the complex physics involved. A major weakness is the lack of good models for: the turbulence modification promoted by the particles, the inter-particle interactions, and the near-wall effects. Eulerian–Lagrangian DNS/LES can play an important role as a research tool, in order to get a better physical understanding, and to improve the models used in the RANS simulations (either Eulerian–Eulerian or Eulerian–Lagrangian).  相似文献   

18.
To obtain practical schemes of vortex–flame interactions, a series of organized eddies formed in the plane premixed shear layer is investigated, instead of a single vortex ring or a single vortex tube. The plane premixed shear layer is first formed between two parallel uniform propane–air mixture streams. For getting clear qualitative pictures of vortex–flame interactions in the plane premixed shear layer, two extreme ignition points are assigned; one is assigned at the center of an organized eddy where the vortex motion plays an important role, the other at the midpoint between two adjacent organized eddies where the rolling-up motion prevails. A premixed flame is initiated by an electric discharge at one of the two assigned points and propagates either in the large scale organized eddy or along the interface between two uniform mixture streams. Propagation and deformation processes of the flame are observed using the simultaneously two-directional and high-speed Schlieren photography. The tangential velocity of organized eddy and the equivalence ratio of premixed shear flow are varied as two main parameters. The outline of propagating flame after the midpoint ignition is numerically analyzed by superposing the flame propagation having a constant burning velocity on the vortex flow field simulated with the discrete vortex method. The results obtained show that there exists another type of vortex–flame interaction in the plane shear layer in addition to the vortex bursting, and that it is caused by the rolling-up motion particular to the coherent structure in the plane shear layer and is simply named the vortex boosting. It is qualitatively concluded therefore that, in the ordinary turbulent premixed flames formed in the plane premixed shear layer, these two fundamental vortex-flame interactions get tangled with each other to augment the propagation velocity. An empirical expression which qualitatively takes into account of the effects of both vortex and chemical properties is finally proposed.  相似文献   

19.
A new approach is proposed to investigate the propagation of a plane compressional wave in matrix composite materials with high volume concentrations of particles. The theory of quasicrystalline approximation and Waterman’s T matrix formalism are employed to treat the multiple scattering resulting from the particles in composites. The addition theorem for spherical Bessel functions is used to accomplish the translation between different coordinate systems. The Percus–Yevick correlation function widely applied in the molecular theory of liquids is employed to analyze the interaction of the densely distributed particles. The analytical expression for the Percus–Yevick correlation function is also given. The closed form solution for the effective propagation constant is obtained in the low frequency limit. Only numerical solutions are obtained at higher frequencies. Numerical examples show that the phase velocities in the composite materials with low volume concentration are in good agreement with those in previous literatures. The effects of the incident wave number, the volume fraction and the material properties of the particles and matrix on the phase velocity are also examined.  相似文献   

20.
This paper presents a computational model for the fluid dynamics in a fractured ductile pipe under high pressure. The pressure profile in front of the crack tip, which is the driving source of crack propagation, is computed using a nonlinear wave equation. The solution is coupled with a one dimensional choked flow analysis behind the crack. The simulation utilizes a high order optimized prefactored compact-finite volume method in space, and low dispersion and dissipation Runge-Kutta in time. As the pipe fractures the rapid depressurization take place inside the pipe and the propagation of the crack-induced waves strongly influences the outflow dynamics. Consistent with the experimental observation, the model predicts the expansion wave inside the pipe, and the reflection and outflow of the wave. The model also helps characterize the propagation of the crack dynamics and fluid flows around the tip of the crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号