首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper deals with the Sturm–Liouville eigenvalue problem with the Dirichlet boundary condition at one end of the interval and with the boundary condition containing entire functions of the spectral parameter at the other end. We study the inverse problem, which consists in recovering the potential from a part of the spectrum. This inverse problem generalizes partial inverse problems on finite intervals and on graphs and also the inverse transmission eigenvalue problem. We obtain sufficient conditions for global solvability of the studied inverse problem, which prove its local solvability and stability. In addition, application of our main results to the partial inverse Sturm–Liouville problem on the star-shaped graph is provided.  相似文献   

2.
The inverse problem of recovering a solution-dependent coefficient multiplying the lowest derivative in a hyperbolic equation is investigated. As overdetermination is required in the inverse problem, an additional condition is imposed on the solution to the equation with a fixed value of the timelike variable. Global uniqueness and local existence theorems are proved for the solution to the inverse problem. An iterative method is proposed for solving the inverse problem.  相似文献   

3.
The inverse spectral problem of recovering pencils of second-order differential operators on the half-line is studied. We give a formulation of the inverse problem, prove the uniqueness theorem and provided a procedure for constructing the solution of the inverse problem. We also establishe connections with inverse problems for partial differential equations.  相似文献   

4.
逆热传导问题(IHCP)是严重不适定问题,即问题的解(如果存在)不连续依赖于数据.但目前关于逆热传导问题的已有结果主要是针对标准逆热传导问题.文中给出了出现在实际问题中的一个抛物型方程侧边值问题,即一个含有对流项的非标准型逆热传导问题的正则逼近解一类Sobolev空间中的最优误差界.  相似文献   

5.
Given a feasible solution, the inverse optimization problem is to modify some parameters of the original problem as little as possible, and sometimes also with bound restrictions on these adjustments, to make the feasible solution become an optimal solution under the new parameter values. So far it is unknown that for a problem which is solvable in polynomial time, whether its inverse problem is also solvable in polynomial time. In this note we answer this question by considering the inverse center location problem and show that even though the original problem is polynomially solvable, its inverse problem is NP–hard.  相似文献   

6.
1.IntroductionItiswellknownthatinverseproblemsinpartialdifferentialequations,mostofwhichhavenotyetbeensolveduptonow,remainasachallengeinappliedmathematics.Therefore,manymathematiciansstudiedvariousinverseproblemsforparabolicequa-tions.FOrasimplesurveywereferto[1,2,8,9]foridentifyingcoefficients,[7]foridentifyingboundaryvalues,[4,10]foridentifyingsourcetermsofparabolicequations.Wehavenotincludedalotofpapersconcerningthecomputationalmethodsusedforsolvinginverseparabolicproblems.Inthispaperthein…  相似文献   

7.
In this paper, an inverse boundary value problem for a two-dimensional hyperbolic equation with overdetermination conditions is studied. To investigate the solvability of the original problem, we first consider an auxiliary inverse boundary value problem and prove its equivalence to the original problem in a certain sense. We then use the Fourier method to reduce such an equivalent problem to a system of integral equations. Furthermore, we prove the existence and uniqueness theorem for the auxiliary problem by the contraction mappings principle. Based on the equivalency of these problems, the existence and uniqueness theorem for the classical solution of the original inverse problem is proved. Some discussions on the numerical solutions for this inverse problem are presented including some numerical examples.  相似文献   

8.
Summary. This paper explores the relationship between certain inverse unitary eigenvalue problems and orthogonal functions. In particular, the inverse eigenvalue problems for unitary Hessenberg matrices and for Schur parameter pencils are considered. The Szeg? recursion is known to be identical to the Arnoldi process and can be seen as an algorithm for solving an inverse unitary Hessenberg eigenvalue problem. Reformulation of this inverse unitary Hessenberg eigenvalue problem yields an inverse eigenvalue problem for Schur parameter pencils. It is shown that solving this inverse eigenvalue problem is equivalent to computing Laurent polynomials orthogonal on the unit circle. Efficient and reliable algorithms for solving the inverse unitary eigenvalue problems are given which require only O() arithmetic operations as compared with O() operations needed for algorithms that ignore the structure of the problem. Received April 3, 1995 / Revised version received August 29, 1996  相似文献   

9.
The inverse spectral problem of recovering pencils of second-order differential operators on the half-line with turning points is studied. We establish properties of the spectral characteristics, give a formulation of the inverse problem, prove a uniqueness theorem and provide a constructive procedure for the solution of the inverse problem.  相似文献   

10.
We study the inverse problem of recovering Sturm-Liouville operators on the half-line with a Bessel-type singularity inside the interval from the given Weyl function. The corresponding uniqueness theorem is proved, a constructive procedure for the solution of the inverse problem is provided, also necessary and sufficient conditions for the solvability of the inverse problem are obtained.  相似文献   

11.
The inverse problem for the FitzHugh-Nagumo and Aliev-Panfilov models describing wave propagation in excitable media is considered. The problem lies in determining a localized initial condition from measurements on the external boundary of a plane region. A numerical method for solving the inverse problem is proposed, and the results from a numerical solution of the inverse problem for regions similar to different sections of a heart are presented.  相似文献   

12.
We consider numerical methods for solving inverse problems that arise in heart electrophysiology. The first inverse problem is the Cauchy problem for the Laplace equation. Its solution algorithm is based on the Tikhonov regularization method and the method of boundary integral equations. The second inverse problem is the problem of finding the discontinuity surface of the coefficient of conductivity of a medium on the basis of the potential and its normal derivative given on the exterior surface. For its numerical solution, we suggest a method based on the method of boundary integral equations and the assumption on a special representation of the unknown surface.  相似文献   

13.
This paper is concerned with the inverse problem of reconstructing an infinite, locally rough interface from the scattered field measured on line segments above and below the interface in two dimensions. We extend the Kirsch-Kress method originally developed for inverse obstacle scattering problems to the above inverse transmission problem with unbounded interfaces. To this end, we reformulate our inverse problem as a nonlinear optimization problem with a Tikhonov regularization term. We prove the convergence of the optimization problem when the regularization parameter tends to zero. Finally, numerical experiments are carried out to show the validity of the inversion algorithm.  相似文献   

14.
一个优化问题的逆问题是这样一类问题,在给定该优化问题的一个可行解时,通过最小化目标函数中参数的改变量(在某个范数下)使得该可行解成为改变参数后的该优化问题的最优解。对于本是NP-难问题的无容量限制设施选址问题,证明了其逆问题仍是NP-难的。研究了使用经典的行生成算法对无容量限制设施选址的逆问题进行计算,并给出了求得逆问题上下界的启发式方法。两种方法分别基于对子问题的线性松弛求解给出上界和利用邻域搜索以及设置迭代循环次数的方式给出下界。数值结果表明线性松弛法得到的上界与最优值差距较小,但求解效率提升不大;而启发式方法得到的下界与最优值差距极小,极大地提高了求解该逆问题的效率。  相似文献   

15.
We consider a problem for a quasilinear hyperbolic equation with a nonlocal condition that contains a retarded argument. By reducing this problem to a nonlinear integrofunctional equation, we prove the existence and uniqueness theorem for its solution. We pose an inverse problem of finding a solution-dependent coefficient of the equation on the basis of additional information on the solution; the information is given at a fixed point in space and is a function of time. We prove the uniqueness theorem for the solution of the inverse problem. The proof is based on the derivation and analysis of an integro-functional equation for the difference of two solutions of the inverse problem.  相似文献   

16.
A partial inverse problem for an integro‐differential Sturm‐Liouville operator on a star‐shaped graph is studied. We suppose that the convolution kernels are known on all the edges of the graph except one and recover the kernel on the remaining edge from a part of the spectrum. We prove the uniqueness theorem for this problem and develop a constructive algorithm for its solution, based on the reduction of the inverse problem on the graph to the inverse problem on the interval by using the Riesz basis property of the special system of functions.  相似文献   

17.
For a partial differential equation simulating population dynamics, the inverse problem of determining its nonlinear right-hand side from an additional boundary condition is studied. This inverse problem is reduced to a functional equation, for which the existence and uniqueness of a solution is proven. An iterative method for solving this inverse problem is proposed. The accuracy of the method is estimated, and restrictions on the number of steps are obtained.  相似文献   

18.
An initial boundary-value problem for a quasilinear system of partial differential equations with a nonlocal boundary condition involving a delayed argument is considered. The existence of a unique solution to this problem is proved by reducing it to a system of nonlinear integral-functional equations. The inverse problem of finding a solution-dependent coefficient of the system from additional information on a solution component specified at a fixed point of space as a function of time is formulated. The uniqueness of the solution of the inverse problem is proved. The proof is based on the derivation and analysis of an integral-functional equation for the difference between two solutions of the inverse problem.  相似文献   

19.
The language of Lagrangian submanifolds is used to extend a geometric characterization of the inverse problem of the calculus of variations on tangent bundles to regular Lie algebroids. Since not all closed sections are locally exact on Lie algebroids, the Helmholtz conditions on Lie algebroids are necessary but not sufficient, so they give a weaker definition of the inverse problem. As an application the Helmholtz conditions on Atiyah algebroids are obtained so that the relationship between the inverse problem and the reduced inverse problem by symmetries can be described. Some examples and comparison with previous approaches in the literature are provided.  相似文献   

20.
The article considers the inverse problem of determining the nonlinear right-hand side of a quasi-linear parabolic equation and proves a uniqueness theorem. A method is proposed for numerical solution of the inverse problem based on parametric representation of the sought coefficient. The inverse problem thus reduces to finding the error-minimizing vector of unknown coefficients of the parametric representation of the sought function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号