首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Progressive Hedging (PH) is a well-known algorithm for solving multi-stage stochastic convex optimization problems. Most previous extensions of PH for mixed-integer stochastic programs have been implemented without convergence guarantees. In this paper, we present a new framework that shows how PH can be utilized while guaranteeing convergence to globally optimal solutions of mixed-integer stochastic convex programs. We demonstrate the effectiveness of the proposed framework through computational experiments.  相似文献   

3.
4.
This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to find upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right-hand sides. The upper bounds are obtained by solving deterministic mathematical programming problems with dimensions that do not depend on the sample space size. The algorithm for the two-stage problem involves the solution of a deterministic linear program and a simple semidefinite program. The algorithm for the multi-stage problem invovles the solution of a quadratically constrained convex programming problem.  相似文献   

5.
In this paper, we present a scenario aggregation algorithm for the solution of the dynamic minimax problem in stochastic programming. We consider the case where the joint probability distribution has a known finite support. The algorithm applies the Alternating Direction of Multipliers Method on a reformulation of the minimax problem using a double duality framework. The problem is solved by decomposition into scenario sub-problems, which are deterministic multi-period problems. Convergence properties are deduced from the Alternating Direction of Multipliers. The resulting algorithm can be seen as an extension of Rockafellar and Wets Progressive Hedging algorithm to the dynamic minimax context.  相似文献   

6.
In this paper we propose a crash-start technique for interior point methods applicable to multi-stage stochastic programming problems. The main idea is to generate an initial point for the interior point solver by decomposing the barrier problem associated with the deterministic equivalent at the second stage and using a concatenation of the solutions of the subproblems as a warm-starting point for the complete instance. We analyse this scheme and produce theoretical conditions under which the warm-start iterate is successful. We describe the implementation within the OOPS solver and the results of the numerical tests we performed.  相似文献   

7.
Much has been written about optimization instance formats. The MPS standard for linear mixed-integer programs is well known and has been around for many years. Other extensible formats are available for other optimization categories such as stochastic and nonlinear programming. However, the problem instance is not the only piece of information shared between the instance generator and the solver. Solver options and solver results must also be communicated. To our knowledge there is no commonly accepted format for representing either solver options or solver results. In this paper we propose a framework and theory for solver option and solver result representation in a modern distributed computing environment. A software implementation of the framework is available as an open-source COIN-OR project.  相似文献   

8.
This paper presents a new relaxation technique to globally optimize mixed-integer polynomial programming problems that arise in many engineering and management contexts. Using a bilinear term as the basic building block, the underlying idea involves the discretization of one of the variables up to a chosen accuracy level (Teles, J.P., Castro, P.M., Matos, H.A. (2013). Multiparametric disaggregation technique for global optimization of polynomial programming problems. J. Glob. Optim. 55, 227–251), by means of a radix-based numeric representation system, coupled with a residual variable to effectively make its domain continuous. Binary variables are added to the formulation to choose the appropriate digit for each position together with new sets of continuous variables and constraints leading to the transformation of the original mixed-integer non-linear problem into a larger one of the mixed-integer linear programming type. The new underestimation approach can be made as tight as desired and is shown capable of providing considerably better lower bounds than a widely used global optimization solver for a specific class of design problems involving bilinear terms.  相似文献   

9.
The business environment is full of uncertainty. Allocating the wealth among various asset classes may lower the risk of overall portfolio and increase the potential for more benefit over the long term. In this paper, we propose a mixed single-stage R&D projects and multi-stage securities portfolio selection model. Specifically, we present a bi-objective mixed-integer stochastic programming model. Moreover, we use semi-absolute deviation risk functions to measure the risk of mixed asset portfolio. Based on the idea of moments approximation method via linear programming, we propose a scenario generation approach for the mixed single-stage R&D projects and multi-stage securities portfolio selection problem. The bi-objective mixed-integer stochastic programming problem can be solved by transforming it into a single objective mixed-integer stochastic programming problem. A numerical example is given to illustrate the behavior of the proposed mixed single stage R&D projects and multi-stage securities portfolio selection model.  相似文献   

10.
Traditional deterministic global optimization methods are often based on a Branch-and-Bound (BB) search tree, which may grow rapidly, preventing the method to find a good solution. Motivated by decomposition-based inner approximation (column generation) methods for solving transport scheduling problems with over 100 million variables, we present a new deterministic decomposition-based successive approximation method for general modular and/or sparse MINLPs. The new method, called Decomposition-based Inner- and Outer-Refinement, is based on a block-separable reformulation of the model into sub-models. It generates inner- and outer-approximations using column generation, which are successively refined by solving many easier MINLP and MIP subproblems in parallel (using BB), instead of searching over one (global) BB search tree. We present preliminary numerical results with Decogo (Decomposition-based Global Optimizer), a new parallel decomposition MINLP solver implemented in Python and Pyomo.  相似文献   

11.
We consider the problem of reproducing the performance of a stock market index, but without purchasing all of the stocks that make up the index, index tracking. We also consider the problem of out-performing the index, enhanced indexation. We present mixed-integer linear programming formulations of these problems. Our formulations include transaction costs, a constraint limiting the number of stocks that can be purchased and a limit on the total transaction cost that can be incurred. As our formulations of these problems are mixed-integer linear programs we can use a standard solver (Cplex). Numeric results are presented for eight data sets drawn from major markets. The largest of these data sets involves over 2000 stocks.  相似文献   

12.
We present an algorithm for solving stochastic integer programming problems with recourse, based on a dual decomposition scheme and Lagrangian relaxation. The approach can be applied to multi-stage problems with mixed-integer variables in each time stage. Numerical experience is presented for some two-stage test problems.  相似文献   

13.
Adly  Samir  Attouch  Hedy 《Mathematical Programming》2022,191(1):405-444

We present a Branch-and-Cut algorithm for a class of nonlinear chance-constrained mathematical optimization problems with a finite number of scenarios. Unsatisfied scenarios can enter a recovery mode. This class corresponds to problems that can be reformulated as deterministic convex mixed-integer nonlinear programming problems with indicator variables and continuous scenario variables, but the size of the reformulation is large and quickly becomes impractical as the number of scenarios grows. The Branch-and-Cut algorithm is based on an implicit Benders decomposition scheme, where we generate cutting planes as outer approximation cuts from the projection of the feasible region on suitable subspaces. The size of the master problem in our scheme is much smaller than the deterministic reformulation of the chance-constrained problem. We apply the Branch-and-Cut algorithm to the mid-term hydro scheduling problem, for which we propose a chance-constrained formulation. A computational study using data from ten hydroplants in Greece shows that the proposed methodology solves instances faster than applying a general-purpose solver for convex mixed-integer nonlinear programming problems to the deterministic reformulation, and scales much better with the number of scenarios.

  相似文献   

14.
Stochastic programming is recognized as a powerful tool to help decision making under uncertainty in financial planning. The deterministic equivalent formulations of these stochastic programs have huge dimensions even for moderate numbers of assets, time stages and scenarios per time stage. So far models treated by mathematical programming approaches have been limited to simple linear or quadratic models due to the inability of currently available solvers to solve NLP problems of typical sizes. However stochastic programming problems are highly structured. The key to the efficient solution of such problems is therefore the ability to exploit their structure. Interior point methods are well-suited to the solution of very large non-linear optimization problems. In this paper we exploit this feature and show how portfolio optimization problems with sizes measured in millions of constraints and decision variables, featuring constraints on semi-variance, skewness or non-linear utility functions in the objective, can be solved with the state-of-the-art solver.  相似文献   

15.
In this paper, we present a multicut version of the Benders decomposition method for solving two-stage stochastic linear programming problems, including stochastic mixed-integer programs with only continuous recourse (two-stage) variables. The main idea is to add one cut per realization of uncertainty to the master problem in each iteration, that is, as many Benders cuts as the number of scenarios added to the master problem in each iteration. Two examples are presented to illustrate the application of the proposed algorithm. One involves production-transportation planning under demand uncertainty, and the other one involves multiperiod planning of global, multiproduct chemical supply chains under demand and freight rate uncertainty. Computational studies show that while both the standard and the multicut versions of the Benders decomposition method can solve large-scale stochastic programming problems with reasonable computational effort, significant savings in CPU time can be achieved by using the proposed multicut algorithm.  相似文献   

16.
We present a structure-conveying algebraic modelling language for mathematical programming. The proposed language extends AMPL with object-oriented features that allows the user to construct models from sub-models, and is implemented as a combination of pre- and post-processing phases for AMPL. Unlike traditional modelling languages, the new approach does not scramble the block structure of the problem, and thus it enables the passing of this structure on to the solver. Interior point solvers that exploit block linear algebra and decomposition-based solvers can therefore directly take advantage of the problem’s structure. The language contains features to conveniently model stochastic programming problems, although it is designed with a much broader application spectrum.  相似文献   

17.
This study considers a real world stochastic multi-period, multi-product production planning problem. Motivated by the challenges encountered in sawmill production planning, the proposed model takes into account two important aspects: (i) randomness in yield and in demand; and (ii) set-up constraints. Rather than considering a single source of randomness, or ignoring set-up constraints as is typically the case in the literature, we retain all these characteristics while addressing real life-size instances of the problem. Uncertainties are modelled by a scenario tree in a multi-stage environment. In the case study, the resulting large-scale multi-stage stochastic mixed-integer model cannot be solved by using the mixed-integer solver of a commercial optimization package, such as CPLEX. Moreover, as the production planning model under discussion is a mixed-integer programming model lacking any special structure, the development of decomposition and cutting plane algorithms to obtain good solutions in a reasonable time-frame is not straightforward. We develop a scenario decomposition approach based on the progressive hedging algorithm, which iteratively solves the scenarios separately. CPLEX is then used for solving the sub-problems generated for each scenario. The proposed approach attempts to gradually steer the solutions of the sub-problems towards an implementable solution by adding some penalty terms in the objective function used when solving each scenario. Computational experiments for a real-world large-scale sawmill production planning model show the effectiveness of the proposed solution approach in finding good approximate solutions.  相似文献   

18.
Numerous planning problems can be formulated as multi-stage stochastic programs and many possess key discrete (integer) decision variables in one or more of the stages. Progressive hedging (PH) is a scenario-based decomposition technique that can be leveraged to solve such problems. Originally devised for problems possessing only continuous variables, PH has been successfully applied as a heuristic to solve multi-stage stochastic programs with integer variables. However, a variety of critical issues arise in practice when implementing PH for the discrete case, especially in the context of very difficult or large-scale mixed-integer problems. Failure to address these issues properly results in either non-convergence of the heuristic or unacceptably long run-times. We investigate these issues and describe algorithmic innovations in the context of a broad class of scenario-based resource allocation problem in which decision variables represent resources available at a cost and constraints enforce the need for sufficient combinations of resources. The necessity and efficacy of our techniques is empirically assessed on a two-stage stochastic network flow problem with integer variables in both stages.  相似文献   

19.
This paper considers deterministic global optimization of scenario-based, two-stage stochastic mixed-integer nonlinear programs (MINLPs) in which the participating functions are nonconvex and separable in integer and continuous variables. A novel decomposition method based on generalized Benders decomposition, named nonconvex generalized Benders decomposition (NGBD), is developed to obtain ??-optimal solutions of the stochastic MINLPs of interest in finite time. The dramatic computational advantage of NGBD over state-of-the-art global optimizers is demonstrated through the computational study of several engineering problems, where a problem with almost 150,000 variables is solved by NGBD within 80 minutes of solver time.  相似文献   

20.
A new deterministic algorithm for solving convex mixed-integer nonlinear programming (MINLP) problems is presented in this paper: The extended supporting hyperplane (ESH) algorithm uses supporting hyperplanes to generate a tight overestimated polyhedral set of the feasible set defined by linear and nonlinear constraints. A sequence of linear or quadratic integer-relaxed subproblems are first solved to rapidly generate a tight linear relaxation of the original MINLP problem. After an initial overestimated set has been obtained the algorithm solves a sequence of mixed-integer linear programming or mixed-integer quadratic programming subproblems and refines the overestimated set by generating more supporting hyperplanes in each iteration. Compared to the extended cutting plane algorithm ESH generates a tighter overestimated set and unlike outer approximation the generation point for the supporting hyperplanes is found by a simple line search procedure. In this paper it is proven that the ESH algorithm converges to a global optimum for convex MINLP problems. The ESH algorithm is implemented as the supporting hyperplane optimization toolkit (SHOT) solver, and an extensive numerical comparison of its performance against other state-of-the-art MINLP solvers is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号