首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article aims to shed some light on the structure and thermo-physical properties of lithium disilicate glasses in the system Li2O–SiO2–Al2O3–K2O. A glass with nominal composition 23Li2O–77SiO2 (mol%) (labelled as L23S77) and glasses containing Al2O3 and K2O with SiO2/Li2O molar ratios (3.13–4.88) were produced by conventional melt-quenching technique in bulk and frit forms. The glass-ceramics (GCs) were obtained from nucleation and crystallisation of monolithic bulk glasses as well as via sintering and crystallisation of glass powder compacts. The structure of glasses as investigated by magic angle spinning-nuclear magnetic resonance (MAS-NMR) depict the role of Al2O3 as glass network former with four-fold coordination, i.e., Al(IV) species while silicon exists predominantly as a mixture of Q 3 and Q 4 (Si) structural units. The qualitative as well as quantitative crystalline phase evolution in glasses was followed by differential thermal analysis (DTA), X-ray diffraction (XRD) adjoined with Rietveld-reference intensity ratio (R.I.R.) method, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The possible correlation amongst structural features of glasses, phase composition and thermo-physical properties of GCs has been discussed.  相似文献   

2.
3.
The total mass attenuation coefficients, partial interaction and the effective atomic numbers (Zeff) of glass system (80−x)B2O3–10Al2O3–10SiO2xCaF2 (where x = 5, 10, 20, 25, 30, 35 and 40 mol %) have been calculated at photon energies 0.662 and 1.25 MeV using the WinXCom software on the basis of mixture rule. Results indicated that the total mass attenuation coefficients showed a decrease with increasing the CaF2 concentration, due to a decrease in Compton scattering probability, which gave a dominant contribution to the total mass attenuation coefficients for the studied glass samples at both energies. However, the photoelectric absorption and coherent scattering showed an increase with increasing the CaF2, concentrations at same energies. For a comparison, the total mass attenuation coefficients of the glass system had lower values at the energy 1.25 MeV than that at 0.662 MeV. Zeff was found to increase linearly with the increase of CaF2 concentrations. It was concluded that low CaF2 concentrations in glass system, under study, have Zeff close to that of human tissue and have higher total absorption coefficients at energy of 0.662 MeV than that at 1.25 MeV. These results are very useful in designing gamma radiation detectors using thermoluminescence technique. Therefore, it is recommended to use low CaF2 concentration of our glass system as good gamma detectors at energy of 1.25 MeV.  相似文献   

4.
The effects caused by modifying additives, namely nonionic surfactants (Tween 80 and Neonol AF 9-6) and oxides (B2O3 and HfO2), on the rheology, film formation, and phase formation in the yttrium aluminum silicate system prepared by sol–gel technology were studied. The effect of 1 wt % HfO2 additions on the activation energy of crystallization was studied.  相似文献   

5.
SiO2–Al2O3–Na2O glass coated cubic boron nitride (cBN) abrasive particles were prepared by sol–gel technique. The results indicated that SiO2–Al2O3–Na2O glass was excellent material for oxidation protection of cBN abrasive grains because coefficient of thermal expansion of this glass closely matched that of cBN materials. The single particle compressive strength and impact toughness of this glass coated cBN abrasive particles were significantly increased. For the application of glass coated cBN abrasives to vitrified grinding wheels, it was evident that the glass coating provided high bonding strength between cBN abrasive grains and vitrified bond system.  相似文献   

6.
In this work, the structure and thermal properties of aluminosilicate fritted glazes in SiO2–Al2O3–CaO–MgO–Na2O–K2O–ZnO system with (4.0 mol%) and without addition of ZnO were examined by GIXRD, FTIR, MAS-NMR and thermal methods (DTA, DIL). It has been found that the all experimental glazes are amorphous material (transparent glazes). On the base of spectroscopic investigations, it was found that zinc ions exist in the network glazes in the octahedral coordination—Zn2+ ions play a network modifier role in structure of glazes. An analysis of the data obtained from thermal tests showed that addition of ZnO into chemical composition results in decrease in glass transition temperature value (T g) for all glazes (DTA, DIL). The coefficient of thermal expansion (α) is decreased as the whole measurement range for one series of fritted glazes.  相似文献   

7.
Thermal properties of raw aluminosilicate ceramic glazes in the multicomponent system of SiO2–Al2O3–CaO–K2O–Na2O–ZnO modified by ZnO addition were studied by differential thermal analysis (DTA), dilatometry (DIL), hot-stage microscopy (HSM), X-ray diffraction and fourier transform infrared spectroscopy (FTIR). Using the method of differential thermal analysis, the ways in which zinc oxides affect the temperature of transition (T g), crystallisation (T c) were determined. An analysis of the DTA data obtained during thermal tests showed that an increase in ZnO content results in decreasing the T g value. Also, the influence of ZnO on characteristic temperatures and viscosity of glazes was checked. The introduction of zinc oxide (ZnO) into the glaze composition contributes to the decrease in viscosity of such glazes. An increasing ZnO content in the glazes also causes the reduction in softening (T s), half-sphere (T half-sphere) and fusion (T fusion) temperatures. The mid-infrared spectroscopy showed that the thermal properties of glazes in SiO2–Al2O3–CaO–K2O–Na2O–ZnO system modified by addition of ZnO can be associated with the depolymerising influence of zinc ions on the structure of the tested glazes.  相似文献   

8.
The purpose of this work was to employ the differential thermal analysis (DTA) technique to compare variations in the collapse energy of the zeolite Y crystalline structure in a fresh catalyst and in the same catalyst impregnated with nickel and vanadium. A small exothermic signal in the DTA curve at 950–1150 °C indicated the collapse of the crystalline structure. The areas of the exothermic signals in the DTA curves of the two samples indicated a reduction in the curve of the metal impregnated catalyst. These results were compared with X-ray data, leading to the conclusion that metal impregnation affects the zeolite Y crystalline structure and that the DTA technique is a potentially useful tool for measuring the integrity of zeolite Y in catalysts.  相似文献   

9.
The high efficacy of iron-containing catalysts based on SiO2–Al2O3 systems obtained via sol–gel method in the oxidative destruction of carmoisine azo dye in aqueous solutions is demonstrated. It is found that the stability of the catalysts with respect to the leaching of iron ions into a solution during catalysis grows along with the aluminum content in the composition of aluminosilicate supports. It is concluded that the synthesized catalysts are promising materials for purifying wastewaters contaminated with organic dyes.  相似文献   

10.
Supported nickel–molybdenum and nickel–tungsten hydrocracking catalysts prepared using a support that consists of 70% Al2O3 and 30% amorphous aluminosilicate were characterized by nitrogen and mercury porosimetry, IR spectroscopy of adsorbed CO, and high-resolution electron microscopy. The catalytic tests in hydrocracking of vacuum gas oil containing 3.39% sulfur showed that the nature of the hydrogenating component (NiMo or NiW) only slightly influences the vacuum gas oil conversion and the diesel fraction yield, but noticeable influences the properties of the diesel fraction obtained. The catalyst NiMo/Al2O3–amorphous aluminosilicates, compared to NiW/Al2O3–amorphous aluminosilicates, ensures lower sulfur content in the diesel fraction obtained, whereas the catalyst NiW/Al2O3–amorphous aluminosilicates allows obtaining a diesel fraction with lower content of polyaromatic compounds.  相似文献   

11.
Tungstate-containing aluminum oxide is suitable as a catalyst support for hydrodeoxygenation of sunflower oil, ensuring 81–83 wt % yield of liquid products at 380°С, 4.0 MPa, and feed space velocity of 1 h–1. The catalyst acidity increases with increasing tungsten oxide content, leading to an increase in the content of decarboxylation/decarbonylation products and isoparaffins in the product mixture.  相似文献   

12.
The structure of Ga2O3–Al2O3 supports and Pd/Ga2O3–Al2O3 catalysts and the performance of these catalysts in liquid-phase acetylene hydrogenation have been investigated. The deposition of Ga(NO3)3 onto Al2O3 by impregnation followed by calcination of the impregnated support at 600°C yields γ-Ga2O3–Al2O3 solid solutions containing up to 50 wt % Ga2O3. X-ray diffraction characterization of model palladium catalysts and their temperature-programmed reduction with hydrogen have demonstrated that, while palladium in Pd/Ga2O3 is in the form of a Pd2Ga alloy, in the Pd/γ-Ga2O3–Al2O3 catalyst there is no direct interaction between PdО and Ga2O3 particles and palladium is in the monometallic state. The introduction of 10–20 wt % gallium oxide into Al2O3 lowers the activity of the supported palladium catalyst relative to that of the initial Pd/Al2O3 but increases the ethylene yield by enhancing the ethylene formation selectivity.  相似文献   

13.
Regularities of formation of complex aluminates with structure of P/RS intergrowth type phases in the Ln2O3–MO–Al2O3 systems (Ln = rare-earth element, M = Mg, Ca, Sr, Ba) have been considered. Systematization of the data on formation of complex compounds coexisting with one-layer phases in the Ln2O3–MO–Al2O3 systems and analysis of geometry criteria of LnMAlO4 stability is a promising approach to prediction of novel compounds with structure of Ruddlesden–Popper phase.  相似文献   

14.
15.
A powder mixture of Al/TiO2/H3BO3 = 10/3/6 in molar ratio was used in this study to form the Al2O3–TiB2 ceramic composite via thermite reactions (combustion synthesis). As no combustion synthesis occurred for an unmilled sample in a furnace, the mixture was milled in a planetary ball-mill for various milling times, and the as-milled samples were in situ synthesized in the furnace at a heating rate of 10 °C/min. The differential scanning calorimetry (DSC) measurements were performed with the same heating rate on the unmilled and the as-milled samples to evaluate the influences of the milling on the mechanisms and efficiencies of reactions. Although no combustion synthesis occurred for the unmilled sample in the furnace, two exothermic peaks were detected in its DSC curve after the melting of the Al. For the as-milled samples, significant changes revealed in the DSC curves, suggest that the milling process before the combustion synthesis changed the mechanisms and efficiencies of reactions. In addition, the intensity and the temperature of the exothermic peaks in the DSC curves changed by increasing the milling time. According to the XRD analyses, by enhancing the milling time, the purity of the final products would increase, confirming that the efficiency of the reactions increased. Finally, the microstructures of the as-milled and as-synthesized samples were examined by a SEM, and it was shown that the morphology of the reactant powders was altered by increasing the milling time.  相似文献   

16.
The crystallization of K2O·TiO2·3GeO2 glass under non-isothermal condition was studied. In powdered glass with particle sizes less than 0.15 mm, surface crystallization was dominant and an activation energy of crystal growth of E a,s=327±50 kJ mol−1 was calculated. In the size range 0.15 to 0.45 mm, both surface and volume crystallization occurred. For particle sizes >0.45 mm, volume crystallization dominated with spherulitic morphology of the crystals growth and E a,v=359±64 kJ mol−1 was calculated.  相似文献   

17.
Via sol–gel processing metal–organic fibers were produced and dried up to 140 °C. For these gel fibers the influence of a treatment in different atmospheres was investigated for the temperature range of 200–850 °C. The atmospheres were nitrogen, water vapor, evaporated nitric and hydrochloric acid and evaporated hydrogen peroxide. In the presence of moisture and especially with acidic moisture fibers were transformed almost completely to their oxide composition (82 mol% Al2O3·18 mol% Y2O3). In these inorganic amorphous structures considerable differences were observed on several structural levels. On the atomic scale, the coordination of Al ions was investigated by 27Al MAS NMR and skeletal density by He-pycnometry. Porosity in the nm scale was characterized by N2-sorption. As a macroscopic effect of different treatment atmospheres, the longitudinal shrinkage was observed. For fibers treated at 500 °C the relative shrinkage varied by 100% (comparing water vapor and nitrogen atmosphere). No simple correlation between the release of organic constituents, the formation of porosity and the shrinkage could be found. These aspects were controlled by the rigidity of the inorganic network against atomic reconstitution. The kind of atmosphere was found to be an effective parameter to control various aspects of the xerogel structure.  相似文献   

18.
A series of MoO3/ZrO2–Al2O3 catalysts was prepared and investigated in the sulfur-resistant methanation aimed at production of synthetic natural gas. Different methods including impregnation, deposition precipitation, and co-precipitation were used for preparing ZrO2–Al2O3 composite supports. These composite supports and their corresponding Mo-based catalysts were investigated in the sulfur-resistant methanation, and characterized by N2 adsorption–desorption, XRD and H2-TPR. The results indicated that adding ZrO2 promoted MoO3dispersion and decreased the interaction between Mo species and support in the MoO3/ZrO2–Al2O3 catalysts. The co-precipitation method was favorable for obtaining smaller ZrO2 particle size and improving textural properties of support, such as better MoO3 dispersion and increased concentration of Mo6+ species in octahedral coordination to oxygen. It was found that the MoO3/ZrO2–Al2O3 catalyst with ZrO2Al2O3 composite support prepared by co-precipitation method exhibited the best catalytic activity. The ZrO2 content in the ZrO2Al2O3 composite support was further optimized. The MoO3/ZrO2–Al2O3 with 15 wt % ZrO2 loading exhibited the highest sulfur-resistant CO methanation activity, and excess ZrO2 reduced the specific surface area and enhanced the interaction between Mo species and support. The N2 adsorption-desorption results indicated that the presence of ZrO2 in excessive amounts decreased the specific surface area since some amounts of ZrO2 form aggregates on the surface of the support. The XRD and H2-TPR results showed that with the increasing ZrO2 content, ZrO2 particle size increased. These led to the formation of coordinated tetrahedrally Mo6+(T) species and crystalline MoO3, and this development was unfavorable for improving the sulfur-resistant methanation performance of MoO3/ZrO2–Al2O3 catalyst.  相似文献   

19.
Adsorption dynamics of chlorobenzene vapors on a 5% V2O5/Al2O3 catalyst has been investigated using the frontal chromatography technique. The uptakes of chlorobenzene have been measured as a function of vapor concentration and adsorption equilibrium has been found to follow formally the Langmuir isotherm. The breakthrough time proved to be a linear function of the column length as expected. Breakthrough profiles have been reported for different experimental conditions and quantitatively fitted by a reduced lumped diffusion model. This model provides an analytical solution that facilitates engineering calculations. Model parameters show complex behavior as functions of stream characteristics and depend on column length. When empirical expressions relating model mass transfer coefficients with influencing variables are found the model demonstrates good accuracy in predicting column performance.  相似文献   

20.
A series of Pd/Al2O3–ZrO2 catalysts were prepared to be used in methane oxidation. The effect of the addition order of metal alkoxides on the texture, structure and catalytic properties of the solids is studied. The control of the preparation parameters is achieved via sol gel way as an attractive route of the preparation of these catalysts. N2 physisorption, XRD, Scanning Electronic Microscopy (SEM) and H2 chemisorption are the main techniques used to characterize the prepared Pd/Al2O3–ZrO2 catalysts. Textural analysis reveals the mesoporosity of all the catalysts independently of the addition order of alkoxides while surface area is more pronounced when the aluminium alkoxide is added before or with the zirconium precursor. XRD patterns show the development of the zirconia tetragonal phase for all the catalysts. Better metallic dispersion is obtained when aluminium alkoxide is added first which can be justified by the high homogeneity observed on the corresponding catalyst as revealed by SEM technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号