共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a density functional theory study of colloidal interactions in a concentrated polymer solution. The colloids are modeled as hard spheres and polymers are modeled as freely jointed tangent hard sphere chains. Our theoretical results for the polymer-mediated mean force between two dilute colloids are compared with recent simulation data for this model. Theory is shown to be in good agreement with simulation. We compute the colloid-colloid potential of mean force and the second virial coefficient, and analyze the behavior of these quantities as a function of the polymer solution density, the polymer chain length, and the colloid/polymer bead size ratio. 相似文献
2.
We investigate the structure formation of amphiphilic molecules at planar walls using density functional theory. The molecules are modeled as (hard) spheres composed of a hydrophilic and hydrophobic part. The orientation of the resulting Janus particles is described as a vector representing an internal degree of freedom. Our density functional approach involves fundamental measure theory combined with a mean-field approximation for the anisotropic interaction. Considering neutral, hydrophilic, and hydrophobic walls, we study the adsorption of the particles, focusing on the competition between the surface field and the interaction-induced ordering phenomena. Finally, we consider systems confined between two planar walls. It is shown that the anisotropic Janus interaction yields pronounced frustration effects at low temperatures. 相似文献
3.
Egorov SA 《The Journal of chemical physics》2008,129(6):064901
We present a density functional theory study of interactions between sterically stabilized colloidal particles in solvents of variable quality. Both flat and spherical polymer brushes are considered, as well as both monatomic and polymeric solvents. It is shown that the interaction between sterically stabilized particles can be tuned from repulsive to attractive by varying the solvent quality, the relative length of free and grafted chains, and by employing a mixed brush consisting of both well and poorly solvated chains. 相似文献
4.
Schiller P Krüger S Wahab M Mögel HJ 《Langmuir : the ACS journal of surfaces and colloids》2011,27(17):10429-10437
Using Derjaguin's approximation, we have evaluated the interaction energy associated with van der Waals, electrostatic, depletion, and capillary forces between colloidal spheroids. If the interaction range between spheroids is distinctly smaller than the lengths of their principal axes, then simple pair potentials that depend on particle distance and orientation can be derived. Attractive interactions between adjacent spheroids favor their parallel alignment. Parallel spheroids can be arranged into a variety of densely packed configurations. All of these configurations turn out to have the same lattice energy. We discuss the implications of this degeneracy with respect to the stability of photonic crystals consisting of spheroids. 相似文献
5.
6.
T.G.M. van de Ven 《Advances in colloid and interface science》1982,17(1):105-127
Recent progress in experimental and theoretical developments dealing with colloidal. interactions between two spheres in shear flow is reviewed. A systematic comparison is made between spheres suspended in simple electrolyte and in cationic polyelectrolye solutions. Microrheological observations, performed with the traveling microtube, make an in-depth investigation possible of the colloidal forces and the mechanisms of polymer bridge formation. Reasons are discussed for the often-observed aging of colloidal aggregates. Finally, coagulation rates are presented for systems with weak and strong Brownian motion. It is shown that the often-used assumption of additivity of the ortho- and perikinetic coagulation rates is incorrect. 相似文献
7.
We introduce the notion of "Janus balance" (J), defined as the dimensionless ratio of work to transfer an amphiphilic colloidal particle (a "Janus particle") from the oil-water interface into the oil phase, normalized by the work needed to move it into the water phase. The J value can be calculated simply from the interfacial contact angle and the geometry of Janus particles, without the need to know the interfacial energy. It is demonstrated that Janus particles of the same chemical composition but different geometries will have the highest adsorption energy when J = 1. Even for particles of homogeneous chemical makeup, the Janus balance concept can be applied when considering the contact angle hysteresis in desorbing the particle from equilibrium into the water or oil phase. The Janus balance concept may enable predictions of how a Janus particle behaves with respect to efficiency and function as a solid surfactant, as the Janus balance of solid surfactants is the analog of the classical hydrophile-lipophile balance of small surfactant molecules. 相似文献
8.
9.
Binary mixtures of amphiphiles in solution can self-assemble into a wide range of structures when the two species individually form aggregates of different curvatures. A specific example of this is seen in solutions of lipid mixtures where the two species form lamellar structures and spherical micelles, respectively. Here, vesicles connected by threadlike micelles can form in a narrow concentration range of the sphere-forming lipid. We present a study of these structures based on self-consistent field theory (SCFT), a coarse-grained model of amphiphiles. First, we show that the addition of sphere-forming lipid to a solution of lamella-former can lower the free energy of cylindrical, threadlike micelles and hence encourage their formation. Next, we demonstrate the coupling between composition and curvature; specifically, that increasing the concentration of sphere-former in a system of two bilayers connected by a thread leads to a transfer of amphiphile to the thread. We further show that the two species are segregated within the structure, with the concentration of sphere-former being significantly higher in the thread. Finally, the addition of larger amounts of sphere-former is found to destabilize the junctions linking the bilayers to the cylindrical micelle, leading to a breakdown of the connected structures. The degree of segregation of the amphiphiles and the amount of sphere-former required to destabilize the junctions is shown to be sensitive to the length of the hydrophilic block of the sphere-forming amphiphiles. 相似文献
10.
The behavior of dense colloidal fluids near surfaces can now be probed in great detail with experimental techniques like confocal microscopy. In fact, we are approaching a point where quantitative comparisons of experiment with particle-level theory, such as classical density functional theory (DFT), are appropriate. In a forward sense, we may use a known surface potential to predict a particle density distribution function from DFT; in an inverse sense, we may use an experimentally measured particle density distribution function to predict the underlying surface potential from DFT. In this paper, we tested the ability of the closure-based DFT of Zhou and Ruckenstein (J. Chem. Phys. 2000, 112, 8079-8082) to perform forward and inverse calculations on potential models commonly employed for colloidal particles and surfaces. To reduce sources of uncertainty in this initial study, Monte Carlo simulation results played the role of experimental data. The combination of Rogers-Young and modified-Verlet closures consistently performed well across the different potential models. For a reasonable range of choices of the density, temperature, and potential parameters, the inversion procedure yielded particle-surface potentials to an accuracy on the order of 0.1kT. 相似文献
11.
We present a dynamic density functional theory (dDFT) which takes into account the advection of the particles by a flowing solvent. For potential flows, we can use the same closure as in the absence of solvent flow. The structure of the resulting advected dDFT suggests that it could be used for nonpotential flows as well. We apply this dDFT to Brownian particles (e.g., polymer coils) in a solvent flowing around a spherical obstacle (e.g., a colloid) and compare the results with direct simulations of the underlying Brownian dynamics. Although numerical limitations do not allow for an accurate quantitative check of the advected dDFT both show the same qualitative features. In contrast to previous works which neglected the deformation of the flow by the obstacle, we find that the bow wave in the density distribution of particles in front of the obstacle as well as the wake behind it are reduced dramatically. As a consequence, the friction force exerted by the (polymer) particles on the colloid can be reduced drastically. 相似文献
12.
By integrating polymer density function theory (DFT) and single-chain molecular simulation, a hybrid DFT is developed for homopolymer mixtures confined in a selective nanoslit. Two weighting functions are adopted separately in the polymer DFT for repulsive and attractive contributions to the excess free energy functional. The theoretical results agree well with simulation data for the density profiles, configurations (tail, loop and train), adsorption amounts, layer thicknesses, and partition coefficients. The polymer-slit interaction is found to have a large effect on the density profiles and partition coefficients but is found to have a small effect on the average sizes and percentages of the configurations. Nearly half of the polymer segments form tails, and the other half form trains. In addition, bridges are observed to form for sufficiently long polymer chains. As the length difference between two polymers increases, the effect of chain connectivity becomes increasingly important. 相似文献
13.
Density functional theory (DFT) studies were performed to investigate the effect of substituents on the properties of benzdiyne derivatives. Twelve substituted benzdiynes-C(6)X(2), where X = F, Cl, Br, Me, CF(3), CN, OH, NO(2), NH(2), OMe, NMe(2), and Ph-were considered along with the unsubstituted 1,4-benzdiyne. The structures, vibrational frequencies, and IR intensities of these benzdiynes were studied with a popular three-parameter hybrid density functional (B3LYP) combined with the split-valence 6-31G(d) basis set and Dunning's correlation-consistent polarized triple-zeta (cc-pVTZ) basis set. The relative stabilities of the substituted benzdiynes were studied with the help of reaction energies of isodesmic reactions, which showed that the electron-withdrawing groups destabilized the benzdiynes more than they did the corresponding benzenes, whereas the electron-donating groups stabilized the benzdiynes more than they did their benzene counterparts. Correlation analyses revealed that field/inductive effects played a more important role than did resonance effects. The changes in atomic charges and spin populations due to the substituents were also studied. The asymmetric nu(Ctbd1;C) stretching modes obtained were close to the 1500-cm(-)(1) mark. Reinvestigation of the experimental results supported these results; a weak IR band at 1486 cm(-)(1) was assigned to this asymmetric stretching mode in C(6)(CF(3))(2) F. Some other benzdiynes also had large IR intensity values for their asymmetric nu(Ctbd1;C) vibrational modes due to the coupling with other vibrational modes. Heats of formation for the substituted benzdiynes were obtained from the reaction energies calculated at the B3LYP/cc-pVTZ level of theory. 相似文献
14.
We present a density functional theory (DFT) study on the mechanisms of gas-phase ozonolysis of three isomers of difluoroethylene, namely, cis-1,2-difluoroethylene, trans-1,2-difluoroethylene, and 1,1-difluoroethylene. MPW1K/cc-pVDZ and BHandHLYP/cc-pVDZ methods are employed to optimize the geometries of stationary points as well as the points on the minimum energy path (MEP). The energies of all the points were further refined at the QCISD(T)/cc-pVDZ and QCISD(T)/6-31+G(df,p) levels of theory with zero-point energy (ZPE) corrections. The ozone-cis-1,2-difluoroethylene reaction is predicted to be slower than the ozone-trans-1,2-difluoroethylene reaction. The enhanced reactivity of trans-1,2-difluoroethylene relative to the cis isomer is similar to the reactions of ozone with cis- and trans-dichloroethylene. The ozone-1,1-difluoroethylene reaction is predicted to be slower than the ozone-trans-1,2-difluoroethylene reaction. These results are in agreement with experimental studies. The calculated mechanisms indicate that in ozone-difluoroethylene reactions the yields of OH might be trivial, which is different from the reactions of ozone with unsaturated hydrocarbons. 相似文献
15.
In Part I [R. E. Beckham and M. A. Bevan, J. Chem. Phys. 127, 164708 (2007)], results were presented for the sedimentation equilibrium of concentrated colloidal dispersions using confocal scanning laser microscopy experiments, Monte Carlo (MC) simulations, and a local density approximation perturbation theory. In this paper, we extended the modeling effort on those systems to include nonlocal density functional theory (DFT), which is capable of predicting the microstructure of the sediment at length scales comparable to the colloidal particle dimension. Specifically, we use a closure-based DFT formulation to predict interfacial colloidal sedimentation equilibrium density profiles. The colloid-colloid and colloid-surface interactions were modeled with DLVO screened electrostatic potentials using parameters taken directly from the experimental work. The DFT profiles were compared to the experimental and MC results from Part I. Good agreement was found for relatively dilute interfacial colloidal fluids, but agreement was less satisfactory as interfacial layering became more pronounced for conditions approaching the onset of interfacial crystallization. We also applied DFT in an inverse sense using the measured colloid density profile to extract the underlying colloid-surface potential; this can be thought of as a microscopic analog to the well-known procedure of using the macroscopic (coarse-grained) density profile to extract the osmotic equation of state. For the dilute interfacial fluid, the inverse DFT calculations reproduced the true colloid-surface potential to within 0.5kT at all elevations. 相似文献
16.
A detailed theoretical study of proton transfer reaction in protonated imidazole, 1,2,3-triazole, and tetrazole dimers, the basic components of polymeric membrane used in proton exchange membranes fuel cells, has been carried out. In particular, several approaches based on density functional theory have been considered and their results compared with those provided by post-HF methods. From a computational point of view, these molecules appear to be a very challenging playground also for robust and recent functionals. Indeed none of the considered approaches provide results in close agreement with the reference post-HF data and a combined BMK//B3LYP model seems the only approach able to reproduce both the energetic and the structural features. From a chemical point of view, two new mechanisms of proton transfer in tetrazole dimers have been investigated and found to be more favorable than that previously hypothesized in literature. At the same time, the theoretical results show a direct connection between the obtained proton transfer barrier and the charge localized on the transferred hydrogen. 相似文献
17.
The stability of monomeric formaldehyde encapsulated in the lithium-decorated metal-organic framework Li-MOF-5 was investigated by means of density functional calculations with the M06-L functional and the 6-31G(d,p) basis set. To assess the efficiency of Li-MOF-5 for formaldehyde preservation, we consider the reaction kinetics and the thermodynamic equilibrium between formaldehyde and its trimerized product, 1,3,5-trioxane. We propose that trimerization of encapsulated formaldehyde takes place in a single reaction step with an activation energy of 34.5 kcal mol(-1). This is 17.2 kcal mol(-1) higher than the corresponding activation energy in the bare system. In addition, the reaction energy of the system studied herein is endothermic by 6.1 kcal mol(-1) and the Gibbs free energy (ΔG) of the reaction becomes positive (11.0 kcal mol(-1)). Consequently, the predicted reverse rate for the trimerization reaction in the Li-MOF-5 is significantly faster than the forward rate. The calculations show that the oligomerization of formaldehyde in Li-MOF-5 is a reversible reaction, suggesting that such a zeolite might be a good candidate material for preserving formaldehyde in its monomeric form. 相似文献
18.
We report an investigation of the mechanistic features of OH-initiated oxidation reactions of p-xylene using density function theory (DFT). Reaction energies for the formation of the aromatic intermediate radicals have been obtained to determine their relative stability and reversibility, and their activation barriers have been analyzed to assess the energetically favorable pathways to propagate the p-xylene oxidation. OH addition is predicted to occur dominantly at the ortho position, with branching ratios of 0.8 and 0.2 for ortho and ipso additions, respectively, and the calculated overall rate constant is in agreement with available experimental studies. Under atmospheric conditions, the p-xylene peroxy radicals arising from initial OH and subsequent O(2) additions to the ring are shown to cyclize to form bicyclic radicals, rather than to react with NO to lead to ozone formation. With relatively low barriers, isomerization of the p-xylene bicyclic radicals to more stable epoxide radicals likely occurs, competing with O(2) addition to form bicyclic peroxy radicals. The study provides thermochemical and kinetic data for assessment of the photochemical production potential of ozone and formation of toxic products and secondary organic aerosol from p-xylene oxidation. 相似文献
19.
Hydrogenation of alkyne-alkene mixtures of small sized hydrocarbons has been traditionally performed with Pd-based catalysts modified by a second metal. Over the last few years, this hydrogenation process has become a thriving field to understand selective processes that might be applicable to more complex molecules, for instance those derived from biomass. We summarize here the large body of experimental and open industrial documents to show the properties of different catalytic formulations, we concentrated on the role of the secondary metals employed. We compare these results to theoretical work performed over the last few years and to our new results based on Density Functional Theory. With this insight, we illustrate how secondary compounds behave under typical reaction conditions and how the reaction conditions might affect the stability of the catalyst. 相似文献
20.
Structural Chemistry - Structural changes induced via ionization in an RDX lattice have been studied by using optimized [(RDX)2]0 conformers comprising eight combinations of four RDX isomers using... 相似文献