首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed an efficient and novel polyene-dye-sensitized nanocrystalline TiO2 solar cells producing a 6.8% solar energy-to-electricity conversion efficiency (eta) under AM 1.5 irradiation (100 mW cm(-2)): short-circuit current density (Jsc), 12.9 mA cm(-2), open-circuit photovoltage (Voc), 0.71 V, fill factor (ff), 0.74.  相似文献   

2.
Poly(3,4-ethylenedioxythiophene) (PEDOT) is an excellent hole-conducting polymer able to replace the liquid I(-)/I3(-) redox electrolyte in dye-sensitized solar cells (DSCs). In this work we applied the in situ photoelectropolymerization technique to synthesize PEDOT and carried out a careful analysis of the effect of different doping anions on overall solar cell performance. The anions analyzed in this work are ClO4(-), CF3SO3(-), BF4(-), and TFSI(-). The best solar cell performance was observed when the TFSI(-) anion was used. Photoelectrochemical and impedance studies reveal that the doped anions in the PEDOT hole conductor system have great influences on I-V curves, conductivity, and impedance. The optimization of these parameters allowed us to obtain an iodine-free solid-state DSC with a maximum J(sc) of 5.3 mA/cm2, V(oc) of 750 mV, and a conversion efficiency of 2.85% which is the highest efficiency obtained so far for an iodine-free solid-state DSC using PEDOT as hole-transport material.  相似文献   

3.
The results of a batch-process solar disinfection (SODIS) and solar photocatalytic disinfection (SPCDIS) on drinking water contaminated with Cryptosporidium are reported. Cryptosporidium parvum oocyst suspensions were exposed to natural sunlight in Southern Spain and the oocyst viability was evaluated using two vital dyes [4',6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI)]. SODIS exposures (strong sunlight) of 8 and 12h reduced oocyst viability from 98% (+/-1.3%) to 11.7% (+/-0.9%) and 0.3% (+/-0.33%), respectively. SODIS reactors fitted with flexible plastic inserts coated with TiO2 powder (SPCDIS) were found to be more effective than those which were not. After 8 and 16 h of overcast and cloudy solar irradiance conditions, SPCDIS reduced oocyst viability from 98.3% (+/-0.3%) to 37.7% (+/-2.6%) and 11.7% (+/-0.7%), respectively, versus to that achieved using SODIS of 81.3% (+/-1.6%) and 36.0% (+/-1.0%), respectively. These results confirm that solar disinfection of drinking water can be an effective household intervention against Cryptosporidium contamination.  相似文献   

4.
Mesoporous tungsten carbides displayed an excellent solar conversion efficiency (7.01%) as a counter electrode for dye sensitized solar cells under 100 mW cm(-2), AM 1.5G illumination, which corresponded to ca. 85% of the efficiency of the conventional platinum electrode.  相似文献   

5.
The tandem solar cell architecture is an effective way to harvest a broader part of the solar spectrum and make better use of the photonic energy than the single junction cell. Here, we present the design, synthesis, and characterization of a series of new low bandgap polymers specifically for tandem polymer solar cells. These polymers have a backbone based on the benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Alkylthienyl and alkylphenyl moieties were incorporated onto the BDT unit to form BDTT and BDTP units, respectively; a furan moiety was incorporated onto the DPP unit in place of thiophene to form the FDPP unit. Low bandgap polymers (bandgap = 1.4-1.5 eV) were prepared using BDTT, BDTP, FDPP, and DPP units via Stille-coupling polymerization. These structural modifications lead to polymers with different optical, electrochemical, and electronic properties. Single junction solar cells were fabricated, and the polymer:PC(71)BM active layer morphology was optimized by adding 1,8-diiodooctane (DIO) as an additive. In the single-layer photovoltaic device, they showed power conversion efficiencies (PCEs) of 3-6%. When the polymers were applied in tandem solar cells, PCEs over 8% were reached, demonstrating their great potential for high efficiency tandem polymer solar cells.  相似文献   

6.
Dye-sensitized solar cells based on co-sensitization of organic dyes having complementary spectral absorption in the visible region resulted in a panchromatic response, which exhibited 86% incident monochromatic photon-to-current conversion efficiency in the visible region; the optimized cell gave a short circuit current density of 15.5 mA cm(-2), an open circuit voltage of 685 mV and a fill factor of 0.70 corresponding to an overall conversion efficiency of 7.43% under solar simulated light irradiation of 100 mW cm(-2).  相似文献   

7.
Novel unsymmetrical organic sensitizers comprising donor, electron-conducting, and anchoring groups were engineered at a molecular level and synthesized for sensitization of mesoscopic titanium dioxide injection solar cells. The unsymmetrical organic sensitizers 3-(5-(4-(diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D5), 3-(5-bis(4-(diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D7), 5-(4-(bis(4-methoxyphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D9), and 3-(5-bis(4,4'-dimethoxydiphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D11) anchored onto TiO2 and were tested in dye-sensitized solar cell with a volatile electrolyte. The monochromatic incident photon-to-current conversion efficiency of these sensitizers is above 80%, and D11-sensitized solar cells yield a short-circuit photocurrent density of 13.90 +/- 0.2 mA/cm(2), an open-circuit voltage of 740 +/- 10 mV, and a fill factor of 0.70 +/- 0.02, corresponding to an overall conversion efficiency of 7.20% under standard AM 1.5 sun light. Detailed investigations of these sensitizers reveal that the long electron lifetime is responsible for differences in observed open-circuit potential of the cell. As an alternative to liquid electrolyte cells, a solid-state organic hole transporter is used in combination with the D9 sensitizer, which exhibited an efficiency of 3.25%. Density functional theory/time-dependent density functional theory calculations have been employed to gain insight into the electronic structure and excited states of the investigated species.  相似文献   

8.
以MEH-PPV{poly[2-methoxy-5-(2'-ethylhexoxy)]-1,4-phenylene vinylene}作为电子给体材料, PCBM[1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61]作为电子受体材料, 制成了共混体系的高性能太阳电池. 光电池在100 mW/cm2强度光照下, 其开路电压Voc为0.8 V, 短路电流密度Jsc为5.06 mA/cm2, 填充因子FF为48.1%, 能量转换效率η为1.93%. UV-Vis及PL图表明, MEH-PPV与PCBM之间没有发生化学变化, 但有明显的荧光猝灭, 说明光生激子能有效地快速分离, 并在各自的传输网络中传递. 分析了光照及暗导I-V曲线的物理意义, 探讨了MEH-PPV与PCBM之间的电荷传输, 研究了在不同强度的光照下器件性能的变化. 随着光强的增加, 器件的短路电流密度线性增大, 开路电压也略有升高, 并联电阻和填充因子下降, 串联电阻变化不明显. 分析了其物理机理, 并进行了合理的解释.  相似文献   

9.
The monomer and intermolecular charge-transfer complexes of 13 different quinoline derivatives with diiodine were studied using ab initio molecular orbital (MO) and density functional theory (DFT) methods. Calculations revealed that the sigma* orbital of iodine interacts with the nitrogen lone pair in the quinoline ring. The open-circuit photovoltage (V(oc)) values of an Ru(II) complex dye-sensitized nanocrystalline TiO(2) solar cell with an I(-)/I(3) (-) redox electrolyte in acetonitrile using quinoline additives were compared to the computational calculations on the intermolecular interaction between quinolines and I(2). The optimized geometries, frequency analyses, Mulliken population analyses, natural bond orbital (NBO) analyses, and interaction energies indicate that the V(oc) value of the solar cell is higher when quinoline complexes more favorably interact with I(2). Therefore, the interaction between the quinoline additives and iodine redox electrolyte is an important factor for controlling dye-sensitized solar cell performance.  相似文献   

10.
Journal of Thermal Analysis and Calorimetry - The solar collector (reflector and receiver) is the primary device being used in the concentrating solar power technologies for tapping the solar...  相似文献   

11.
We found that Br-/Br3- is more suitable than an I-/I3- couple in dye-sensitized solar cells in terms of higher open-circuit photovoltage (Voc) production and higher overall energy conversion efficiency (eta) if the dye sensitizer has a more positive potential than that of Br-/Br3-. Under simulated AM1.5 one sun, an eosin Y dye-sensitized solar cell containing 0.4 M LiBr + 0.04 M Br2 electrolyte in acetonitrile yielded a short-circuit photocurrent (Jsc) of 4.63 mA cm(-2), Voc of 0.813 V, and fill factor (FF) of 0.693, corresponding to 2.61% of eta. Under the same conditions except for the electrolyte 0.4 M LiI + 0.04 M I2 in acetonitrile instead, the device produced 1.67% of eta (Jsc = 5.15 mA cm(-2), Voc = 0.451 V, FF = 0.721). Replacement of I-/I3- with Br-/Br3- in eosin Y dye-sensitized solar cells yielded a significant increase in Voc offset by slight decreases in Jsc and FF, leading to an increase in eta by 56%. The significant gain in Voc was attributed to the enlarged energy level difference between the redox potential of the electrolyte and the Fermi level of TiO2 and the suppressed charge recombination as well. The rate for charge recombination between bromine and the injected electrons was determined to be first order in bromine.  相似文献   

12.
The co-sensitization of two organic dyes (SQ1 and JK2), which are complementary in their spectral responses, shows enhanced photovoltaic performance compared with that of an individual organic dye-sensitized solar cell. The power conversion efficiency of the co-sensitized organic dye solar cell based on the newly developed binary ionic liquid (solvent-free) electrolyte gives 6.4% under AM 1.5 sunlight at 100 mW/cm2 irradiation, which is higher than that of individual dye-sensitized solar cells. The incident monochromatic photon-to-current conversion efficiency (IPCE) of the co-sensitized solar cell shows typical absorption peaks at 530 and 650 nm corresponding to the two dyes and displays a broad spectral response over the entire visible spectrum with IPCE of >40% in the 400-700 nm wavelength domain.  相似文献   

13.
Russian Journal of Applied Chemistry - Among the various types of solar cells, the dye-sensitized solar cells (DSSCs) are a type of thin-film solar photovoltaic cells that have been the subject of...  相似文献   

14.
All-polymer solar cells based on blends of the low band gap polymers poly{[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]} (PTB7) and poly{[N,N-9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bithiophene)} (P(NDI2OD-T2)) are demonstrated. The use of the donor polymer PTB7 instead of poly(3-hexylthiophene) results in a higher open-circuit voltage and an overall spectral response better matched to the solar spectrum. A power conversion efficiency of 1.1% is reported with a peak external quantum efficiency of 18% at a wavelength of 680 nm. The microstructure of PTB7:P(NDI2OD-T2) blends is also investigated using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS), near-edge X-ray fine-structure (NEXAFS) spectroscopy, atomic force microscopy (AFM), and scanning transmission X-ray microscopy (STXM). GIWAXS measurements show that PTB7:P(NDI2OD-T2) blends contain P(NDI2OD-T2) crystallites with a (100) thickness of 9.5 nm dispersed in an amorphous PTB7 matrix. STXM measurements indicate a lack of mesoscale phase separation, with AFM and NEXAFS measurements revealing a P(NDI2OD-T2)-rich top surface with fibrillar morphology. These results indicate that the pairing of low band gap polymers as both donor and acceptor polymers in all-polymer solar cells may be an effective strategy for realizing high-efficiency all-polymer solar cells. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

15.
Kim SH  Kim HW  Sakong C  Namgoong J  Park SW  Ko MJ  Lee CH  Lee WI  Kim JP 《Organic letters》2011,13(21):5784-5787
Phenothiazine derivatives with various conjugated linkers (furan, thiophene, and 3,4-ethylenedioxythiophene) were synthesized and used in dye-sensitized solar cells to study the effect of conjugated linkers on device performance. Among them, one with furan as a conjugated linker showed a solar energy-to-electricity conversion efficiency (η) of 6.58%, an improvement of over 24% compared with the T2-1 reference cells' 5.29% under AM 1.5 G irradiation.  相似文献   

16.
Journal of Solid State Electrochemistry - High-crystalline tungsten trioxides (WO3) have been synthesized by an environmentally friendly method using concentrated solar energy. The obtained...  相似文献   

17.
Solar UV radiation (280-400 nm) may affect morphology of cyanobacteria, however, little has been evidenced on this aspect while their physiological responses were examined. We investigated the impacts of solar PAR and UVR on the growth, photosynthetic performance and morphology of the cyanobacterium Anabaena sp. PCC7120 while it was grown under three different solar radiation treatments: exposures to (a) constant low PAR (photosynthetic active radiation, 400-700 nm), (b) natural levels of solar radiation with and (c) without UV radiation (290-400 nm). When the cells were exposed to solar PAR or PAR+UVR, the photochemical efficiency was reduced by about 40% and 90%, respectively, on day one and recovered faster under the treatment without UVR over the following days. Solar UVR inhibited the growth up to 40%, reduced trichome length by up to 49% and depressed the differentiation of heterocysts. Negligible concentrations of UV-absorbing compounds were found even in the presence of UVR. During the first 2 d of exposure to natural levels of PAR, carotenoid concentrations increased but no prolonged increase was evident. Heterocyst formation was enhanced under elevated PAR levels that stimulated quantum yield and growth after an initial inhibition. Higher concentrations of carotenoids and a twofold increase in the carotenoid to chlorophyll a ratio provided protection from the high levels of solar PAR. Under radiation treatments with UVR the relatively greater decrease in chlorophyll a concentrations compared with the increase in carotenoids was responsible for the higher carotenoid: chlorophyll a ratio. Heterocyst formation was disrupted in the presence of solar UVR. However, the longer term impact of heterocyst disruption to the survival of Anabaena sp. requires further study.  相似文献   

18.
Phytoplanktonic species acclimated to high light are known to show less photoinhibition. However, little has been documented on how cells grown under indoor conditions for decades without exposure to UV radiation (UVR, 280-400 nm) would respond differently to solar UVR compared to those in situ grown under natural solar radiation. Here, we have shown the comparative photosynthetic and growth responses to solar UVR in an indoor- (IS) and a naturally grown (WS) Skeletonema costatum type. In short-term experiment (<1 day), Phi(PSII) and photosynthetic carbon fixation rate were more inhibited by UVR in the IS than in the WS cells. The rate of UVR-induced damages of PSII was faster and their repair was significantly slower in IS than in WS. Even under changing solar radiation simulated for vertical mixing, solar UVR-induced higher inhibition of photosynthetic rate in IS than in WS cells. During long-term (10 days) exposures to solar radiation, the specific growth rate was much lower in IS than WS at the beginning, then increased 3 days later to reach an equivalent level as that of WS. UVR-induced inhibition of photosynthetic carbon fixation in the IS was identical with that of WS at the end of the long-term exposure. The photosynthetic acclimation was not accompanied with increased contents of UV-absorbing compounds, indicating that repair processes for UVR-induced damages must have been accelerated or upgraded.  相似文献   

19.
本文合成了两个结构新颖的三芳基咪唑类化合物5(Im)和6(Bn-Im),然后通过1,3-偶极化反应合成了C60吡咯烷衍生物7(Im-C60)和8(Bn-Im-C60),用MS, NMR, IR 等对其结构进行了表征。初次组装了七个太阳能电池,结构分别为FTO/TiO2/CdSe/Pt, FTO/TiO2/C60/Pt,FTO/TiO2/Im-C60/Pt,FTO/TiO2/ Bn-Im-C60/Pt, FTO/TiO2/C60-CdSe/Pt,FTO/TiO2/Im-C60-CdSe/Pt和FTO/TiO2/Bn-Im-C60-CdSe /Pt,对其光电性能进行了表征,结果表明:与CdSe敏化太阳能电池相比,以Im-C60-CdSe和Bn-Im-C60-CdSe为敏化剂的电池效率分别增加了5.28%和40.08%。  相似文献   

20.
Benzimidazolyl functionalized ionic liquids were synthesized and applied as additives for dye-sensitized solar cells. The fabricated devices show an overall power conversion efficiency of ~7.79% under AM 1.5 radiation (50 mW cm(-2)), and an excellent long-term stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号