首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Third-order nonlinear optical properties of GeSe2–In2Se3–CsI chalcogenide bulk glasses are studied by Standard pico-second (ps) time-resolved optical Kerr effect (OKE) technique. The obtained χ(3) and n2 at 1064 nm of the glass 72.25GeSe2–23.75In2Se3–5CsI are as large as 10.07 × 10−12 esu and 6.5 × 10−18 m2/W, respectively, more than twice that of As2S3 glass. The relationship between glass compositions and the third-order nonlinear optical responses was analyzed by Raman spectra in terms of structural evolution. It is suggested that the tetrahedral units ([GeSe4] and [InSe4]) play an important role in the ultrafast third-order nonlinear optical responses of these chalcohalide glasses.  相似文献   

2.
Phase equilibrium in the pseudo-quaternary system K2O–MoO3–P2O5–Bi2O3 was studied as three-component solvent K2MoO4–KPO3–MoO3 containing 15 mol% Bi2O3 during slow cooling and spontaneous crystallization. The results of the investigation were shown on a composition diagram, which indicates the crystallization fields of K2Bi(PO4)(MoO4), K5Bi(MoO4)4, BiPO4 and K3Bi5(PO4)6. New phosphate K3Bi5(PO4)6 was characterized by single-crystal X-ray diffraction (space group C2/c, a=17.680(4), b=6.9370(14), c=18.700(4) Å, β=113.79(3)°) and FTIR spectroscopy. The possibility of lone electron pair stereoactivity of bismuth was suggested using the calculations of characteristics of the Voronoi–Dirichlet polyhedra for K3Bi5(PO4)6 and K2Bi(PO4)(MoO4).  相似文献   

3.
The non-isothermal crystallization of α-Fe from Fe81B13Si4C2 amorphous alloy was investigated. The kinetic parameters of crystallization process were determined by Kissinger and Kissinger–Akahira–Sunose (KAS) methods. It was established that the kinetic parameters of transformation do not change with the degree of crystallization in the range of 0.1–0.7. The kinetic model of the crystallization process was determined using the Malek's procedure. It was established that the primary crystallization α-Fe phase from amorphous alloy can be described by Šesták–Berggren autocatalytic model with kinetic triplet Ea = 349.4.0 kJ mol−1, ln A = 50.76 and f(α) = α0.72(1 − α)1.02.  相似文献   

4.
Borate glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (49.99-x)B2O3 + 25Li2O + 25LiF+xEu2O3 by varying the concentration of the rare earth ion in the order 0.01, 0.1, 1, 2 and 3 wt% and their structural, luminescence and thermal behavior have been reported. The XRD and FTIR spectra reveal the glass structure and the functional groups. The UV–VIS, luminescence spectra and lifetime of the Eu3+ ions were measured. The local site symmetry around the Eu3+ ions were evaluated through the luminescence intensity ratio (R) of the 5D0 → 7F2 to 5D0 → 7F1 transitions. Optical measurements have been carried out to explore the optical properties such as bonding parameters, Judd–Ofelt parameters, stimulated emission cross-section, transition probability, branching ratio, radiative lifetime, etc. The lifetime measurements of the 5D0 level as a function of the concentration of Eu3+ ion have been found and is comparable to other reported for Eu3+ doped borate, phosphate glasses and higher than that for the tellurite glasses. The thermal properties such as glass transition, crystallization and melting temperatures of the Eu3+ glasses were studied through the DSC traces in the temperature range of 30−1200 °C at a heating rate of 10 °C per minute. The change in optical properties with the variation of Eu3+ ion concentration have been discussed and compared with similar results.  相似文献   

5.
The structures of several Ga2O3–In2O3–SnO2 phases were investigated using high-resolution electron microscopy, X-ray diffraction, and Rietveld analysis of time-of-flight neutron diffraction data. The phases, expressed as Ga4−4xIn4xSnn−4O2n−2 (n=6 and 7–17, odd), are intergrowths between the β-gallia structure of (Ga,In)2O3 and the rutile structure of SnO2. Samples prepared with n≥9 crystallize in C2/m and are isostructural with intergrowths in the Ga2O3–TiO2 system. Samples prepared with n=6 and n=7 are members of an alternative intergrowth series that crystallizes in P2/m. Both intergrowth series are similar in that their members possess 1-D tunnels along the b axis. The difference between the two series is described in terms of different crystallographic shear plane operations (CSP) on the parent rutile structure.  相似文献   

6.
Cu2+ binding on γ-Al2O3 is modulated by common electrolyte ions such as Mg2+, , and in a complex manner: (a) At high concentrations of electrolyte ions, Cu2+ uptake by γ-Al2O3 is inhibited. This is partially due to bulk ionic strength effects and, mostly, due to direct competition between Mg2+ and Cu2+ ions for the SO surface sites of γ-Al2O3. (b) At low concentrations of electrolyte ions, Cu2+ uptake by γ-Al2O3 can be enhanced. This is due to synergistic coadsorption of Cu2+ and electrolyte anions, and . This results in the formation of ternary surface species (SOH2SO4Cu)+, (SOH2PO4Cu), and (SOH2HPO4Cu)+ which enhance Cu2+ uptake at pH < 6. The effect of phosphate ions may be particularly strong resulting in a 100% Cu uptake by the oxide surface. (c) EPR spectroscopy shows that at pH  pHPZC, Cu2+ coordinates to one SO group. Phosphate anions form stronger, binary or ternary, surface species than sulfate anions. At pH  pHPZC Cu2+ may coordinate to two SO groups. At pH  pHPZC electrolyte ions and are bridging one O-atom from the γ-Al2O3 surface and one Cu2+ ion forming ternary [γ-Al2O3/elecrolyte/Cu2+] species.  相似文献   

7.
D.F. Zhou  Y.J. Xia  J.X. Zhu  J. Meng   《Solid State Sciences》2009,11(9):1587-1591
Ce6−xDyxMoO15−δ (0.0 ≤ x ≤ 1.8) were synthesized by modified sol–gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 °C and 800 °C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15−δ detected to be the best conducting phase with the highest conductivity (σt = 8.93 × 10−3 S cm−1) is higher than that of Ce5.6Sm0.4MoO15−δ (σt = 2.93 × 10−3 S cm−1) at 800 °C, and the corresponding activation energy of Ce5.6Dy0.4MoO15−δ (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15−δ (1.002 eV).  相似文献   

8.
The solubilities and the physicochemical properties (densities, viscosities, refractive indices, conductivities, and pH) in the liquid–solid metastable system (NaCl–KCl–CaCl2–H2O) at 288.15 K have been studied using the isothermal evaporation method. Based on the experimental data, the dry-salt phase diagram, water-phase diagram and the diagram of physicochemical properties vs. composition in the system were plotted. The dry-salt phase diagram of the system includes one three-salt co-saturated point, three metastable solubility isotherm curves, and three crystallization regions corresponding to sodium chloride, potassium chloride and calcium chloride hexahydrate. Neither solid solution nor double salts were found. Based on the extended Harvie–Weare (HW) model and its temperature-dependent equation, the values of the Pitzer parameters β(0), β(1), C for NaCl, KCl and CaCl2, the mixed ion-interaction parameters θNa,K, θNa,Ca, θK,Ca, ΨNa,K,Cl, ΨNa,Ca,Cl, ΨK,Ca,Cl, the Debye–Hückel parameter A and the standard chemical potentials of the minerals in the quaternary system at 288.15 K were obtained. In addition, the average equilibrium constants of metastable equilibrium solids at the same temperature were obtained using a method derived from the activity product constant for the metastable system. Using the standard chemical potentials of the minerals and the average equilibrium constants of solids at equilibrium, the solubility predictions for the quaternary system are presented. A comparison between the calculated and experimental results shows that the predicted solubilities obtained with the extended HW model using the average equilibrium constants agree well with experimental data.  相似文献   

9.
A synthetic method for the fabrication of silica-based mesoporous magnetic (Fe or iron oxide spinel) nanocomposites with enhanced adsorption and magnetic capabilities is presented. The successful in situ synthesis of magnetic nanoparticles is a consequence of the incorporation of a small amount of carbon into the pores of the silica, this step being essential for the generation of relatively large iron oxide magnetic nanocrystals (10 ± 3 nm) and for the formation of iron nanoparticles. These composites combine good magnetic properties (superparamagnetic behaviour in the case of SiO2–C–Fe3O4/γ–Fe2O3 samples) with a large and accessible porosity made up of wide mesopores (>9 nm). In the present work, we have demonstrated the usefulness of this kind of composite for the adsorption of a globular protein (hemoglobin). The results obtained show that a significant amount of hemoglobin can be immobilized within the pores of these materials (up to 180 mg g−1 for some of the samples). Moreover, we have proved that the composite loaded with hemoglobin can be easily manipulated by means of an external magnetic field.  相似文献   

10.
The phase relations in the system In2O3–TiO2–MgO at 1100 and 1350°C are determined by a classical quenching method. In this system, there are four pseudobinary compounds, In2TiO5, MgTi2O5 (pseudobrookite type), MgTiO3 (ilmenite type), and Mg2TiO4 (spinel type) at 1100°C. At 1350°C, in addition to these compounds there exist a spinel-type solid solution Mg2−xIn2xTi1−xO4 (0≤x≤1) and a compound In6Ti6MgO22 with lattice constants a=5.9236(7) Å, b=3.3862(4) Å, c=6.3609(7) Å, β=108.15(1)°, and q=0.369, which is isostructural with the monoclinic In3Ti2FeO10 in the system In2O3–TiO2–MgO. The relation between the lattice constants of the spinel phase and the composition nearly satisfies Vegard's law. In6Ti6MgO22 extends a solid solution range to In20Ti17Mg3O67 with lattice constants of a=5.9230(5) Å, b=3.3823(3) Å, c=6.3698(6) Å, β=108.10(5)°, and q=0.360. The distributions of constituent cations in the solid solutions are discussed in terms of their ionic radius and site preference effect.  相似文献   

11.
Details of quaternary compounds formation in the system NaF–CaF2–AlF3 are specified. To achieve this aim, the samples of phases NaCaAlF6 and Na2Ca3Al2F14 have been obtained by high-temperature solid-phase synthesis. Their thermal behavior when heated up to 800 °C has been studied using the methods of high-temperature X-ray diffraction (XRD) and thermal analysis (TA). The system under consideration can be regarded as a quasibinary section CaF2–NaAlF4, where at T=745–750 °C invariant equilibrium is implemented with the phases CaF2–NaCaAlF6–Na2Ca3Al2F14–(liquid melt)–(NaAlF4). The peculiarity of the equilibrium is NaAlF4 metastability at normal pressure. Below the equilibrium temperature the quaternary phase Na2Ca3Al2F14 is stable and NaCaAlF6 above this temperature. The phase NaCaAlF6 fixed by rapid quenching from high temperatures and when heated up to 640 °C decomposes, yielding Na2Ca3Al2F14. Further heating in vacuum at temperature up to 740 °C results in decomposition of Na2Ca3Al2F14 into CaF2 and Na3AlF6. The expected reverse transformation of Na2Ca3Al2F14 into NaCaAlF6 has not been observed under experimental conditions. Transformations in bulk samples reveal direct and reverse transformation of quaternary phases.

Synopsis

Thermal transformation of the quaternary compounds in system (NaF–CaF2–AlF3) was investigated using high-temperature X-ray diffraction (XRD) and thermal analysis (TA). In the system the invariant equilibrium is implemented with the phases CaF2–NaCaAlF6–Na2Ca3Al2F14–(liquid melt)–(NaAlF4) at T=745–750 °C.  相似文献   

12.
TiO2–carbon nanotube (CNT) heterojunction arrays on Ti substrate were fabricated by a two-step thermal chemical vapor deposition (CVD) method. CNT arrays were first grown on Ti substrate vertically, and then a TiO2 layer, whose thickness could be controlled by varying the deposition time, was deposited on CNTs. Measured by electrochemical impedance spectroscopy (EIS), the thickness of the TiO2 layer could affect the photoresponse ability significantly. About 100 nm thickness of the TiO2 layer proved to be best for efficient charge separation among the tested samples. The optimized TiO2–CNT heterojunction arrays displayed apparently higher photoresponse capability than that of TiO2 nanotube arrays which was confirmed by surface photovoltage (SPV) technique based on Kelvin probe and EIS. In the photocatalytic experiments, the kinetic constants of phenol degradation with TiO2–CNT heterojunctions and TiO2 nanotubes were 0.75 h−1 (R2 = 0.983) and 0.39 h−1 (R2 = 0.995), respectively. At the same time, 53.7% of total organic carbon (TOC) was removed with TiO2–CNT heterojunctions, while the removal of TOC was only 16.7% with TiO2 nanotubes. These results demonstrate the super capability of the TiO2–CNT heterojunction arrays in photocatalysis with comparison to TiO2-only nanomaterial.  相似文献   

13.
CaO solubility in equimolar molten salts CaCl2x (x = 0, NaCl, KCl, SrCl2, BaCl2 and LiCl) was determined at 873–1223 K and activity coefficient calculated. CaO solubility in the binary salts is less than in CaCl2, and the activity coefficient is greater than one. With increasing temperature CaO solubility increases and the activity coefficient decreases. The dependency of CaO activity coefficient on temperature in equimolar molten salts CaCl2x is
CaCl2RTln γCaO = 6961 + 5.06 T (K)1123–1223 K
CaCl2–NaClRTln γCaO = 3985 + 17.67 T (K)923–1123 K
CaCl2–KClRTln γCaO = 2384 + 22.72 T (K)1073–1223 K
CaCl2–SrCl2RTln γCaO = 27245–1.13 T (K)1073–1223 K
CaCl2–BaCl2RTln γCaO = 17068 + 10.19 T (K)1223–1273 K
CaCl2–LiClRTln γCaO = 14724 + 0.72 T (K)923–1073 K
  相似文献   

14.
Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses were prepared using the melt-quenching process and analyzed by X-diffraction, Raman spectroscopy, excitation and emission spectra, and emission decay time profiles. The lack of X ray diffraction peaks revealed that all samples are amorphous. Vibrational modes associated with TeOTe and GeOGe related bonds and molecular oxygen were detected by Raman spectroscopy. The luminescence characteristics were studied upon excitations that correspond with the emission of InGaN (370–420 nm) based LEDs. The Eu3+ singly doped glass displayed reddish-orange global emission, with x = 0.601 and y = 0.349 CIE1931 chromaticity coordinates, upon 393 nm excitation. Neutral emission with x = 0.373 and y = 0.412 CIE1931 chromaticity coordinates and correlated color temperature (CCT) of 4400 K, was achieved in the Dy3+ singly doped glass excited at 388 nm. The Dy3+/Eu3+ co-doped glass exhibited warm, neutral and soft warm white emissions with CCT values of 3435, 4153 and 2740 K, under excitations at 382, 388 and 393 nm, respectively, depending mainly on the Dy3+ and Eu3+ relative excitation. The Dy3+ excitation bands observed in the Dy3+/Eu3+ glass by monitoring the 611 nm Eu3+ emission, suggest that Dy3+ → Eu3+ energy transfer takes place, despite the fact that the Dy3+ emission decays in the Dy3+ and Dy3+/Eu3+ doped glass, remain without changes. The shortening of Eu3+ decay in presence of Dy3+ was attributed to an Eu3+ → Dy3+ non-radiative energy transfer process, which according with the Inokuti-Hirayama model might be dominated through an electric quadrupole-quadrupole interaction, with efficiency and probability of 5.5% and 51.6 s−1, respectively.  相似文献   

15.
Complete active space self-consistent-field (CASSCF) approach has been used for the geometry optimization of the X2Σ+ and A2Π electronic states for the linear magnesium-containing carbon chains MgC2nH (n = 1–5). Multireference second-order perturbation theory (CASPT2) has been used to calculate the vertical excitation energies from the ground to selected seven excited states, as well as the potential energy curves of two 2Σ+ and two 2Π electronic states. The studies indicate that the vertical excitation energies of the A2Π ← X2Σ+ transition for MgC2nH (n = 1–5) are 2.837, 2.793, 2.767, 2.714, and 2.669 eV, respectively, showing remarkable linear size dependence. Compared with the previous TD-DFT and RCCSD(T) results, our estimates for MgC2nH (n = 1–3) are in the best agreement with the available observed data of 2.83, 2.78, and 2.74 eV, respectively. In addition, the dissociation energies in MgC2nH (n = 1–5) are also been evaluated.  相似文献   

16.
In the thermochemical water-splitting iodine–sulfur process for hydrogen production, new polymer electrolyte membranes were applied in an electro-membrane process (electro-electrodialysis, EED) to increase the HI molality of HIx solution (HI + I2 + H2O mixture) to be over quasi-azeotropic. Radiation grafting of a styrene monomer into a poly(ethylene-co-tetrafluoroethylene) base film and subsequent sulfonation provided electrolyte membranes that had ion exchange capacities (IECs) of 1.1–1.6 mmol/g. With the EED of the HIx solutions using [HI] = [I2] = 10 mol/kg at 40 °C the transport number of protons, ratio of permeated quantities of water to the protons, and current efficiency all appeared to depend on the IEC of the resulting membranes. When compared to Nafion, the self-made membranes exhibited lower electric cell resistance, and thereby decreasing up to 32% of the overall energy required in the concentration operation.  相似文献   

17.
Dy5Ni0.66Bi2.34 and Lu5Ni0.56Sb2.44 were synthesized by arc-melting and were found to adopt an orthorhombic Yb5Sb3-type structure. Cell parameters are a = 12.075(2), b = 9.165(2), c = 8.072(1) Å for Dy5Ni0.66Bi2.34 and a = 11.6187(9), b = 8.933(1) and c = 7.8377(6) Å for Lu5Ni0.56Sb2.44. Dy5Ni0.66Bi2.34 undergoes a step-like ferromagnetic transition around 66 K. Magnetocaloric effect in terms of the magnetic entropy change, ΔS, reaches −3.73 J/kg K at 75 K for Dy5Ni0.66Bi2.34.  相似文献   

18.
Mixed-chelate complexes of ruthenium have been synthesized using tridentate Schiff-base ligands (TDLs) derived from condensation of 2-aminophenol or 2-aminobenzoic acid with aldehydes (salicyldehyde, 2-pyridinecarboxaldehyde), and tmeda (tetramethylethylenediamine). [RuIII(hpsd)(tmeda)(H2O)]+ (1), [RuIII(hppc)(tmeda)(H2O)]2+ (2), [RuIII(cpsd)(tmeda)(H2O)]+ (3) and [RuIII(cppc)(tmeda)(H2O)]2+ (4) complexes (where hpsd2− = N-(hydroxyphenyl)salicylaldiminato); hppc = N-(2-hydroxyphenylpyridine-2-carboxaldiminato); cpsd2− = (N-(2-carboxyphenyl)salicylaldiminato); cppc = N-2-carboxyphenylpyridine-2-carboxaldiminato) were characterized by microanalysis, spectral (IR and UV–vis), conductance, magnetic moment and electrochemical studies. Complexes 14 catalyzed the epoxidation of cyclohexene, styrene, 4-chlorostyrene, 4-methylstyrene, 4-methoxystyrene, 4-nitrostyrene, cis- and trans-stilbenes effectively at ambient temperature using tert-butylhydroperoxide (t-BuOOH) as terminal oxidant. On the basis of Hammett correlation (log krel vs. σ+) and product analysis, a mechanism involving intermediacy of a [Ru–O–OBut] radicaloid species is proposed for the catalytic epoxidation process.  相似文献   

19.
Ferroelastic β′-Gd2(MoO4)3, (GMO), crystals are formed through the crystallization of 21.25Gd2O3–63.75MoO3–15B2O3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50–500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called “self-powdering phenomenon during crystallization” in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO4)2− tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals.  相似文献   

20.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号