首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral dimeric metallocyclic complexes of type [M(2)(L(1))(2)B(n)] (where M = cobalt(II), nickel(II) and zinc(II), L(1) is the doubly deprotonated form of a 1,3-aryl linked bis-beta-diketone ligand of type 1,3-bis(RC(O)CH(2)C(O))C(6)H(4) (R=Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray structures of [Co(2)(L(1))(2)(Py)(4)] x 2.25CHCl(3) x 0.5H(2)O (R=Pr), [Co(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Ni(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Zn(2)(L(1))(2)(EtPy)(2)] (R=Me) and [Zn(2)(L(1))(2)(EtPy)(4)] (R=t-Bu) being presented. The electrochemistry of H(2)L(1) (R=t-Bu) and of [Fe(2)(L(1))(3)], [Co(2)(L(1))(2)(Py)(4)], [Ni(2)(L(1))(2)(Py)(4)], [Cu(2)(L(1))(2)] and [Zn(2)(L(1))(2)(Py)(2)] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-beta-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

2.
The structures and properties of six new iron(iii) diamine-bis(phenolate) complexes are reported. Reaction of anhydrous FeX(3) salts (where X = Cl or Br) with the diprotonated tripodal tetradentate ligands 2-pyridylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)[L(1)], and N,N-dimethyl-N',N'-bis(2-methylene-4-methyl-6-tert-butylphenol)ethylenediamine, H(2)[L(2)], produces the trigonal bipyramidal iron(iii) complexes, [L(1)]FeCl , [L(1)]FeBr , [L(2)]FeCl and [L(2)]FeBr . Reaction of FeX(3) with the related linear tetradentate ligand N,N'-bis(4,6-tert-butyl-2-methylphenol)-N,N'-bismethyl-1,2-diaminoethane, H(2)[L(3)], generates square pyramidal iron(iii) complexes, [L(3)]FeCl and [L(3)]FeBr . Complexes have been characterized using electronic absorption spectroscopy and magnetometry. Single crystal X-ray molecular structures have been determined for complexes 1, 3, 5 and 6.  相似文献   

3.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

4.
Three bis-tetradentate acyclic amine ligands differing only in the arm length of the pyridine pendant arms attached to the 4,6-positions of the pyrimidine ring, namely, 4,6-bis[N,N-bis(2'-pyridylethyl)aminomethyl]-2-phenylpyrimidine (L(Et)), 4,6-bis[N,N-bis(2'-pyridylmethyl)aminomethyl]-2-phenylpyrimidine (L(Me)), and 4,6-[(2'-pyridylmethyl)-2'-pyridylethyl)aminomethyl]-2-phenylpyrimidine (L(Mix)) have been used to synthesize nine air-sensitive diiron(II) complexes: [Fe(II)(2)L(Et)(NCS)(4)]·MeOH·(3)/(4)H(2)O (1·MeOH·(3)/(4)H(2)O), [Fe(II)(2)L(Et)(NCSe)(4)]·H(2)O (2·H(2)O), [Fe(II)(2)L(Et)(NCBH(3))(4)]·(5)/(2)H(2)O (3·(5)/(2)H(2)O), [Fe(II)(2)L(Me)(NCS)(4)]·(1)/(2)H(2)O (4·(1)/(2)H(2)O), [Fe(II)(2)L(Me)(NCSe)(4)] (5), [Fe(II)(2)L(Me)(NCBH(3))(4)]·(3)/(2)H(2)O (6·(3)/(2)H(2)O), [Fe(II)(2)L(Mix)(NCS)(4)]·(1)/(2)H(2)O (7·(1)/(2)H(2)O), [Fe(II)(2)L(Mix)(NCSe)(4)]·(3)/(2)H(2)O (8·(3)/(2)H(2)O), and [Fe(II)(2)L(Mix)(NCBH(3))(4)]·(3)/(2)H(2)O (9·(3)/(2)H(2)O). Complexes 3·(5)/(2)H(2)O, 4·(1)/(2)H(2)O, 5, 6·(3)/(2)H(2)O, and 8·(3)/(2)H(2)O were structurally characterized by X-ray crystallography, revealing, in all cases, both of the iron(II) centers in an octahedral environment with two NCE (E = S, Se, or BH(3)) anions in a cis-position relative to one another. Variable temperature magnetic susceptibility measurements showed that all nine diiron(II) complexes are stabilized in the [HS-HS] state from 300 K to 4 K, and exhibit weak antiferromagnetic coupling. M?ssbauer spectroscopy confirmed the spin and oxidation states of eight of the nine complexes (the synthesis of air-sensitive complex 3 was not readily reproduced).  相似文献   

5.
Reactions between 2,6-diformyl-4-methylphenol (DFMF) and tris(hydroxymethyl) aminomethane (THMAM = H(3)L2) in the presence of copper(II) salts, CuX(2) (X = CH(3)CO(2)(-), BF(4)(-), ClO(4)(-), Cl(-), NO(3)(-)) and Ni(CH(3)CO(2))(2) or Ni(ClO(4))(2)/NaC(6)H(5)CO(2), sodium azide (NaN(3)), and triethylamine (TEA), in one pot self-assemble giving a coordination polymer consisting of repeating pentanuclear copper(II) clusters {[Cu(2)(H(5)L(2-))(μ-N(3))](2)[Cu(N(3))(4)]·2CH(3)OH}(n) (1) and hexanuclear Ni(II) complexes [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(CH(3)CO(2))(2)]·6C(3)H(7)NO·C(2)H(5)OH (2) and [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(C(6)H(5)CO(2))(2)]·3C(3)H(7)NO·3H(2)O·CH(3)OH (3). In 1, H(5)L(2-) and in 2 and 3 H(3)L1(-) and HL2(2-) represent doubly deprotonated, singly deprotonated, and doubly deprotonated Schiff-base ligands H(7)L and H(4)L1 and a tripodal ligand H(3)L2, respectively. 1 has a novel double-stranded ladder-like structure in which [Cu(N(3))(4)](2-) anions link single chains comprised of dinuclear cationic subunits [Cu(2)(H(5)L(2-))(μ-N(3))](+), forming a 3D structure of interconnected ladders through H bonding. Nickel(II) clusters 2 and 3 have very similar neutral hexanuclear cores in which six nickel(II) ions are bonded to two H(4)L1, two H(3)L2, four μ-azido, and two μ-CH(3)CO(2)(-)/μ-C(6)H(5)CO(2)(-) ligands. In each structure two terminal dinickel (Ni(2)) units are connected to the central dinickel unit through four doubly bridging end-on (EO) μ-azido and four triply bridging μ(3)-methoxy bridges organizing into hexanuclear units. In each terminal dinuclear unit two nickel centers are bridged through one μ-phenolate oxygen from H(3)L1(-), one μ(3)-methoxy oxygen from HL2(2-), and one μ-CH(3)CO(2)(-) (2)/μ-C(6)H(5)CO(2)(-) (3) ion. Bulk magnetization measurements on 1 show moderately strong antiferromagnetic coupling within the [Cu(2)] building block (J(1) = -113.5 cm(-1)). Bulk magnetization measurements on 2 and 3 demonstrate that the magnetic interactions are completely dominated by ferromagnetic coupling occurring between Ni(II) ions for all bridges with coupling constants (J(1), J(2), and J(3)) ranging from 2.10 to 14.56 cm(-1) (in the ? = -J(1)(?(1)?(2)) - J(1)(?(2)?(3)) - J(2)(?(3)?(4)) - J(1)(?(4)?(5)) - J(1)(?(5)?(6)) - J(2)(?(1)?(6)) - J(3)(?(2)?(6)) - J(3)(?(2)?(5)) - J(3)(?(3)?(5)) convention).  相似文献   

6.
The ligand 2-anilino-4,6-di-tert-butylphenol and its 2-(3,5-dichloroanilino)-4,6-di-tert-butylphenol analogue react in CH(3)CN or CH(3)OH solutions with divalent transition metal ions in the presence of air and triethylamine. Depending on the metal:ligand ratio (1:1, 1:2, or 1:3) and the presence (or absence) of the cyclic amine 1,4-dimethyl-1,4,7-triazacyclononane (dmtacn), the following complexes have been isolated as crystalline solids: [Co(III)(L(ISQ))(3)] (1); [Cu(II)(dmtacn)(L(ISQ))]PF(6) (2); [Cu(II)(L(ISQ))(2)] (3); [Ni(II)(L(ISQ))(2)] (4a); [Ni(II)((Cl)L(ISQ))(2)] (4b); [Pd(II)(L(ISQ))(2)] (5). (L(ISQ))(-) represents the monoanionic o-iminobenzosemiquinonate radical (S(rad) = (1)/(2)). Compounds 1-5 have been characterized by single-crystal X-ray crystallography at 100(2) K. For all complexes it is unambiguously established that the O,N-coordinated o-iminobenzosemiquinonato(1-) ligand is present. Complexes 3, 4b, and 5 are square planar molecules which possess an S(t) = (1)/(2), 0, and 0 ground state, respectively, as was established by (1)H NMR and EPR spectroscopies and variable-temperature magnetic susceptibility measurements. Complex 2 possesses an S(t) = 1 ground state which is attained via strong intramolecular ferromagnetic coupling (J = +195 cm(-1)) between the d(x)2-(y)2 magnetic orbital of the Cu(II) ion and the pi-orbital of the ligand radical. Complex 1 contains three mutually orthogonal (L(ISQ))(-*) ligands and has an S(t) = (3)/(2) ground state. It is shown that the electronic structure of 4a and 5 is adequately described as singlet diradical containing a divalent, diamagnetic d(8) configurated central metal ion and two strongly antiferromagnetically coupled (L(ISQ))(-) radical ligands. It is concluded that the same electronic structure prevails in the classic bis(o-diiminobenzosemiquinonato)- and bis(o-benzosemiquinonato)metal complexes of Ni(II), Pd(II), and Pt(II). The electrochemistry of all complexes has been investigated in detail. For 3, 4a, and 5 a series of reversible one-electron-transfer waves leads to the formation of the anions and cations [M(L)(2)](2-),(1-),(1+),(2+) which have been characterized spectroelectrochemically. All redox processes are shown to be ligand-based.  相似文献   

7.
Two bis(mu-methoxo)dichromium(III) complexes, [L(Se)(2)Cr(2)(mu-OCH(3))(2)(CH(3)OH)(2)] 1 and [L(Se)(2)Cr(2)(mu-OCH(3))(2)(CH(3)OH)(CH(3)O)](-) 2, where L(Se) represents the dianion of 2,2'-selenobis(4,6-di-tert-butylphenol), have been reported to demonstrate the effect of hydrogen bonding on the exchange coupling interactions between the chromium(III) centers. The corresponding sulfur analogue of the ligand, i.e., 2,2'-thiobis(4,6-di-tert-butylphenol), also yields the analogous [L(S)(2)Cr(2)(mu-OCH(3))(2)(CH(3)OH)(2)] 3 and [L(S)(2)Cr(2)(mu-OCH(3))(2)(CH(3)O)(CH(3)OH)](-) 4, which exhibit similar exchange coupling parameters. An acid-base dependent equilibrium between 1 and 2 or 3 and 4 has been established by electronic spectral measurements.  相似文献   

8.
Eight new iron(III) amine-bis(phenolate) complexes are reported. The reaction of anhydrous FeX(3) salts (where X = Cl or Br) with the diprotonated tripodal tetradentate ligands 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L1, 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L2, and 2-methoxyethylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L3, 2-methoxyethylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L4 produces the trigonal bipyramidal iron(III) complexes, L1FeCl (1a), L1FeBr (1b), L2FeCl (2a), L2FeBr (2b), L3FeCl (3a), L3FeBr (3b), L4FeCl (4a), and L4FeBr (4b). All complexes have been characterized using electronic absorption spectroscopy, cyclic voltammetry and room temperature magnetic measurements. Variable temperature magnetic data were acquired for complexes 2b, 3a and 4b. Variable temperature M?ssbauer spectra were obtained for 2b, 3a and 4b. Single crystal X-ray molecular structures have been determined for proligand H(2)L4 and complexes 1b, 2b, and 4b.  相似文献   

9.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

10.
For a number of phosphoryltransfer enzymes, including the exonuclease subunit of DNA polymerase I, a mechanism involving two-metal ions and double Lewis-acid activation of the substrate, combined with leaving group stabilization, has been proposed. Inspired by the active site structure of this enzyme, we have designed as a synthetic phosphoryl transfer catalyst the dicopper(II) macrocyclic complex LCu(2). Crystal structures of complexes [(L)Cu(2)(mu-NO(3))(NO(3))](NO(3))(2) (1), [(L)Cu(2)(mu-CO(3))(CH(3)OH)](BF(4))(2) (2), and [(L)Cu(2)(mu-O(2)P(OCH(3))(2))(NO(3))](NO(3))(2) (3) illustrate various possibilities for the interaction of oxoanions with the dicopper(II) site. 1 efficiently promotes the transesterification of dimethyl phosphate (DMP) in CD(3)OD, k(cat) = 2 x 10(-)(4) s(-)(1) at 55 degrees C. 1 is the only available catalyst for the smooth transesterification of highly inert simple dialkyl phosphates. From photometric titrations and the pH dependence of reactivity, we conclude that a complex [(L)Cu(2)(DMP)(OCH(3))](2+) is the reactive species. Steric bulk at the -OR substituents of phosphodiester substrates O(2)P(OR)(2)(-) drastically reduces the reactivity of 1. This is explained with -OR leaving group stabilization by Cu coordination, an interaction which is sensitive to steric crowding at the alpha-C-atom of substituent R. A proposed reaction mechanism related to that of the exonuclease unit of DNA polymerase I is supported by DFT calculations on reaction intermediates. The complex [(L)Cu(3)(mu(3)-OH)(mu-CH(3)O)(2)(CH(3)CN)(2)](ClO(4))(3) (4) incorporates a [Cu(OH)(OCH(3))(2)(CH(3)CN)(2)](-) complex anion, which might be considered as an analogue of the [PO(2)(OCH(3))(2)(OCD(3))](2)(-) transition state (or intermediate) of DMP transesterification catalyzed by LCu(2).  相似文献   

11.
Wu G  Huang J  Sun L  Bai J  Li G  Cremades E  Ruiz E  Clérac R  Qiu S 《Inorganic chemistry》2011,50(17):8580-8587
The controlled organization of high-spin complexes, eventually single-molecule magnets, is a great challenge in molecular sciences to probe the possibility to design sophisticated magnetic systems to address a large quantity of magnetic information. The coordination chemistry is a tool of choice to make such materials. In this work, high-spin S(T) = 22 [Mn(10)] complexes, such as [Mn(III)(6)Mn(II)(4)(L(1))(6)(μ(4)-O)(4)(μ(3)-N(3))(4)(CH(3)CN)(11)(H(2)O)]·(ClO(4))(2)·(CH(3)CN)(8.5) (1), have been assembled using (i) 1,3-propanediol derivatives as chelating ligands to form the [Mn(10)] core units and (ii) dicyanamide or azide anions as linkers to synthesize the first 2D and 3D [Mn(10)]-based networks: [Mn(III)(6)Mn(II)(4)(L(2))(6)(μ(3)-N(3))(4)(μ(4)-O)(4)(CH(3)OH)(4)(dca)(2)] (2) and [Mn(III)(6)Mn(II)(4)(L(3))(6)(μ(3)-N(3))(4)(μ(4)-O)(4)(N(3))(2)]·(CH(3)OH)(4) (3). The synthesis of these compounds is reported together with their single-crystal X-ray structures and magnetic properties supported by DFT calculations. In the reported synthetic conditions, the stability of the [Mn(10)] complex is remarkably good that allows us to imagine many new materials combining these high-spin moieties and other diamagnetic but also paramagnetic linkers to design for example ordered magnets.  相似文献   

12.
The reactions of the dinuclear copper complexes [Cu(2)(L)(OAc)] [H(3)L = N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) or [Cu(2)(L')(OAc)] (H(3)L' = N,N'-(2-hydroxypropane-1,3-diyl)bis(4,5-dimethylsalicylaldimine)] with various phosphonic acids, RPO(3)H(2) (R = t-Bu, Ph, c-C(5)H(9), c-C(6)H(11) or 2,4,6-i-Pr(3)-C(6)H(2)), leads to the replacement of the acetate bridge affording tetranuclear copper(II) phosphonates, [Cu(4)(L)(2)(t-BuPO(3))](CH(3)OH)(2)(C(6)H(6)) (1), [Cu(4)(L)(2)(PhPO(3))(H(2)O)(2)(NMe(2)CHO)](H(2)O)(2) (2), [Cu(4)(L')(2)(C(5)H(9)PO(3))](CH(3)OH)(2) (3), [Cu(4)(L')(2)(C(6)H(11)PO(3)](MeOH)(4)(H(2)O)(2) (4) and [Cu(4)(L')(2)(C(30)H(46)P(2)O(5))](PhCH(3)) (5). The molecular structures of 1-4 reveal that a [RPO(3)](2-) ligand is involved in holding the four copper atoms together by a 4.211 coordination mode. In 5, an in situ formed [(RPO(2))(2)O](4-) ligand bridges two pairs of the dinuclear subunits. Magnetic studies on these complexes reveal that the phosphonate ligand is an effective conduit for magnetic interaction among the four copper centers present; a predominantly antiferromagnetic interaction is observed at low temperatures.  相似文献   

13.
Addition of rctt-tetrakis(2-pyridyl)cyclobutane (2,2'-tpcb) in a Cu(II)/N(3)- solution afforded the 1D coordination polymer [Cu(3)(N(3))(6)(2,2'-tpcb)(DMF)(2)](n) (1). The ligand 2,2'-tpcb serves as a tetradentate bis-chelating ligand by linking linear [(DMF)Cu(mu(1,1)-N(3))(2)Cu(N(3))(2)(mu(1,1)-N(3))(2)Cu(DMF)] trinuclear units to produce a zigzag chain. Within each centrosymmetric trinuclear unit there exist two irregularly asymmetric end-on double azido-bridged [Cu(mu(1,1)-N(3))(2)Cu](2+) cores, while one of the largest Cu-Nazide-Cu angles is observed. Magnetic susceptibility data, measured from 2 to 300 K, show bulk moderate ferromagnetic coupling within the magnetically isolated trinuclear units. These data were fitted to the appropriate equation derived from the Hamiltonian H = -J(1)(S(A1)S(B) + S(A2)S(B)) - J(2)S(A1)S(A2), giving the parameters J1 = +70(3) cm(-1), J2 = -3(2) cm(-1), g = 2.12(1), with an intertrimer interaction parameter theta = -0.74(2) K. The coupling constants were correlated with the structural parameters. Density functional calculations reproduce very well the experimental J values and show that ferromagnetism for this complex is mainly due to the topology of the magnetic orbitals and the different coordination spheres of two neighboring Cu(II) atoms, resulting in a small overlap of the orbitals possessing the unpaired electrons.  相似文献   

14.
Zhang  Mei  Xian  Dong-Mei  Zhang  Na  Li  Hai-Hua  You  Zhong-Lu 《Structural chemistry》2012,23(5):1489-1496
Structural Chemistry - Three new versatile azido-bridged Schiff base Copper(II) complexes, [Cu2(L1)2(μ1,1-N3)2]·2CH3OH (1), [Cu(L2)(μ1,3-N3)] n (2), and [Cu2(L3)(μ1,1-N3)2(N3)]2...  相似文献   

15.
The reaction between trisdiolatotungsten(VI) complex [W(eg)(3)] (1) (eg = 1,2-ethanediolato dianion) and phenolic ligand precursor methylamino-N,N-bis(2-methylene-4,6-dimethylphenol) (H(2)L(Me)) or methylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol) (H(2)L(tBu)) affords monomeric oxotungsten complex [WO(eg)(L(Me))] (2) or [WO(eg)(L(tBu))] (3), respectively. These complexes react further with chlorinating reagents, which leads to the displacement of ethanediolato ligands from the complex units and formation of cis and trans isomers of the corresponding dichloro complexes [WOCl(2)(L(Me))] (4) and [WOCl(2)(L(tBu))] (5), respectively. Identical dichloro complexes were also prepared by the reaction between the above-mentioned phenolic ligand precursors and [WOCl(4)]. Molecular structures of 3, cis-4, trans-4, and cis-5 were verified by X-ray crystallography. Complexes 2-5 can be activated by Et(2)AlCl to catalyze ring-opening metathesis polymerization of norbornene.  相似文献   

16.
The recent discovery of acireductone dioxygenase (ARD), a metalloenzyme containing a mononuclear octahedral Ni(II) center, necessitates the development of model systems for evaluating the role of the metal center in substrate oxidation chemistry. In this work, three Ni(II) complexes of an aryl-appended tris((2-pyridyl)methyl)amine ligand (6-Ph(2)TPA, N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (1), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))]ClO(4) (3), and [(6-Ph(2)TPA)Ni-Cl(CH(3)CN)]ClO(4) (4), and one Ni(II) complex of tris((2-pyridyl)methyl)amine, [(TPA)Ni(CH(3)CN)(H(2)O)](ClO(4))(2) (2), have been characterized in acetonitrile solution using conductance methods and NMR spectroscopy. In acetonitrile solution, 1-4 have monomeric cations that exhibit isotropically shifted (1)H NMR resonances. Full assignment of these resonances was achieved using one- and two-dimensional (1)H NMR techniques and (2)H NMR of analogues having deuteration of the supporting chelate ligand. COSY cross peaks were observed for pyridyl protons of the 6-Ph(2)TPA ligand in 1 and 3. This study lays the groundwork for using NMR methods to examine chemical reactions of 1 and 2 with model substrates of relevance to ARD.  相似文献   

17.
Reaction of the deprotonated form of cis-{(t-Bu)N(H)P[μ-N(t-Bu)](2)PN(H)(t-Bu)} with CrCl(3)(THF)(3) afforded the trivalent cis-{(t-Bu)NP[μ-N(t-Bu)](2)PN(t-Bu)}[Li (THF)])CrCl(2) (1). Subsequent reaction with 2 equiv of vinyl Grignard (CH(2)=CH)Mg Cl gave the butadiene derivative (cis-{(t-Bu)NP[μ-N(t-Bu)](2)PN(t-Bu)}[Li(THF)])Cr(cis-η(4)-butadiene) (3) formally containing the metal in its monovalent state. The presence of the monovalent state was thereafter confirmed by DFT calculations. The coordination of the butadiene unit appears to be rather robust since reaction with Me(3)P afforded cleavage of the dimeric ligand core but not its displacement. The reaction formed the new butadiene complex [(t-Bu)N-P-N(t-Bu)]Cr(cis-η(4)-butadiene)PMe(3) (4) containing a regular NPN monoanion. In agreement with the presence of monovalent chromium, complexes 3 and 4 act as single-component self-activating catalysts for selective ethylene trimerization and dimerization, respectively.  相似文献   

18.
Reaction of the divalent [(t-Bu)NP(Ph)(2)N(t-Bu)]CrCl(2)Li(THF)(2) (1) with 1 equiv of vinyl Grignard (CH(2)=CH)MgCl reproducibly afforded the triangulo {π-[(t-Bu)N-P(Ph)(2)-N(t-Bu)]Cr}(2)(μ,μ',η(4),η(4)'-C(4)H(4)){σ-[(t-Bu)N-P(Ph)(2)-N(t-Bu)]Cr} (2) containing a σ-/π-bonded butadiene-diyl unit. The diene-diyl moiety was generated by an oxidative coupling and deprotonation of two vinyl anions. The crystal structure revealed that of the three chromium atoms, each bearing one NPN ligand, two are perpendicularly bonded to the two sides of the π-system of the butadiene-diyl residue in a sort of inverted sandwich type of structure. The third is instead coplanar with the doubly deprotonated C(4) unit and σ-bonded to the two terminal carbon atoms. Despite the appearance as a Cr(II)/Cr(I) mixed valence species, DFT calculations have revealed that the structure of 2 consists of three divalent chromium atoms, while the additional electron resides on the π-system of the bridging organic residue. Complex 2 behaves as a single component selective catalyst for ethylene trimerization.  相似文献   

19.
Tripodal bis(imidazole) thioether ligands, (N-methyl-4,5-diphenyl-2-imidazolyl)2C(OR)C(CH3)2SR' (BIT(OR,SR'); R = H, CH3; R' = CH3, C(CH3)3, C(C6H5)3), have been prepared, offering the same N2S donor atom set as the CuM binding site of the hydroxylase enzymes, dopamine beta hydroxylase and peptidylglycine hydroxylating monooxygenase. Isolable copper(I) complexes of the type [(BIT(OR,SMe))Cu(CO)]PF6 (3a and 3b) are produced in reactions of the respective tripodal ligands 1a (R = H) and 1b (R = Me) with [Cu(CH3CN)4]PF6 in CH2Cl2 under CO (1 atm); the pyramidal structure of 3a has been determined crystallographically. The infrared (IR) nu(CO)'s of 3a and 3b (L = CO) are comparable to those of the Cu(M)-carbonylated enzymes, indicating similar electronic character at the copper centers. The reaction of [(BIT(OH,SMe))Cu(CH3CN)]PF6 (2a) with dioxygen produces [(BIT(O,SOMe))2Cu2(DMF)2](PF6)2 (4), whose X-ray structure revealed the presence of bridging BIT-alkoxo ligands and terminal -SOMe groups. In contrast, oxygenation of 2b (R = Me) affords crystallographically defined [(BIT(OMe,SMe))2Cu2(mu-OH)2](OTf)2 (5), in which the copper centers are oxygenated without accompanying sulfur oxidation. Complex 5 in DMF is transformed into five-coordinate, mononuclear [CuII(BIT(OMe,SMe))(DMF)2](PF6)2 (6). The sterically hindered BIT(OR,SR') ligands 9 and 10 (R' = t-Bu; R = H, Me) and 11 and 12 (R' = CPh3; R = H, Me) were also prepared and examined for copper coordination/oxygenation. Oxygenation of copper(I) complex 13b derived from the BIT(OMe,SBu-t) ligand is slow, relative to 2b, producing a mixture of (BIT(OMe,SBu-t))2Cu2(mu-OH)2-type complexes 14b and 15b in which the -SBu-t group is uncoordinated; one of these complexes (15b) has been ortho-oxygenated on a neighboring aryl group according to the X-ray analysis and characterization of the free ligand. Oxygenation of the copper(I) complex derived from BIT(OMe,SCPh3) ligand 12 produces a novel dinuclear disulfide complex, [(BIT(OMe,S)2Cu2(mu-OH)2](PF6)2 (17), which is structurally characterized. Reactivity studies under anaerobic conditions in the presence of t-BuNC indicate that 17 is the result of copper(I)-induced detritylation followed by oxygenation of a highly reactive copper(I)-thiolate complex.  相似文献   

20.
Yao MX  Wei ZY  Gu ZG  Zheng Q  Xu Y  Zuo JL 《Inorganic chemistry》2011,50(17):8636-8644
Using the tricyano precursor (Bu(4)N)[(Tp)Cr(CN)(3)] (Bu(4)N(+) = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate), a pentanuclear heterometallic cluster [(Tp)(2)Cr(2)(CN)(6)Cu(3)(Me(3)tacn)(3)][(Tp)Cr(CN)(3)](ClO(4))(3)·5H(2)O (1, Me(3)tacn = N,N',N'-trimethyl-1,4,7-triazacyclononane), three tetranuclear heterometallic clusters [(Tp)(2)Cr(2)(CN)(6)Cu(2)(L(OEt))(2)]·2.5CH(3)CN (2, L(OEt) = [(Cp)Co(P(O)(OEt)(2))(3)], Cp = cyclopentadiene), [(Tp)(2)Cr(2)(CN)(6)Mn(2)(L(OEt))(2)]·4H(2)O (3), and [(Tp)(2)Cr(2)(CN)(6)Mn(2)(phen)(4)](ClO(4))(2) (4, phen = phenanthroline), and a one-dimensional (1D) chain polymer [(Tp)(2)Cr(2)(CN)(6)Mn(bpy)](n) (5, bpy = 2,2'-bipyridine) have been synthesized and structurally characterized. Complex 1 shows a trigonal bipyramidal geometry in which [(Tp)Cr(CN)(3)](-) units occupy the apical positions and are linked through cyanide to [Cu(Me(3)tacn)](2+) units situated in the equatorial plane. Complexes 2-4 show similar square structures, where Cr(III) and M(II) (M = Cu(II) or Mn(II)) ions are alternatively located on the rectangle corners. Complex 5 consists of a 4,2-ribbon-like bimetallic chain. Ferromagnetic interactions between Cr(III) and Cu(II) ions bridged by cyanides are observed in complexes 1 and 2. Antiferromagnetic interactions are presented between Cr(III) and Mn(II) ions bridged by cyanides in complexes 3-5. Complex 5 shows metamagnetic behavior with a critical field of about 22.5 kOe at 1.8 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号