首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The versatility of intramolecular carbolithiation of simple alkenes to yield cyclopentylmethyllithiums by unconjugated organolithiums is greatly increased (1) by generating the organolithiums by reductive lithiation of phenyl thioethers with aromatic radical anions and (2) by using allylic or homoallylic alcohol groups on the receiving alkene. This type of reductive lithiation allows virtually any kind of organolithium to be generated, usually in a connective manner. Furthermore, the allylic or homoallylic lithium oxyanionic groups on the alkene greatly accelerate the reactions and lead in most cases to completely stereoselective cyclization at -78 degrees . Most significantly, the trans stereoselectivity is the opposite from that observed when the organometallic is allylic. A four-membered ring has also been generated by this method.  相似文献   

2.
The rotating ring-disk electrode (RRDE) technique has been employed to study the reductive polymerization mechanism of para-cyanobenzaldehyde (CBA) in dimethyl sulfoxide (DMSO) solutions. The radical anion of CBA underwent polymerization through two different reaction routes. They were found to be the successive parent molecule addition to the radical anion reactions and the dimerization of the radical anion followed by parent molecule additions. Digital simulation methods were employed to simulate the mechanism and to obtain the second-order reaction rate constants of the radical anions from collection efficiency measurements. The reaction rate constants were found to be 1.45 M?1 s?1 for reactions of the radical anion with the parent molecules, and 28.6 M?1 s?1 for dimerization of the radical anion followed by trapping a parent molecule immediately after the dimeric dianion is generated.  相似文献   

3.
The reductive lithiation of phenyl thioethers, or alkyl chlorides, by either preformed aromatic radical anions or by lithium metal and an aromatic electron‐transfer catalyst, is commonly used to prepare organolithiums. Revealed herein is that these two methods are fundamentally different. Reductions with radical anions occur in solution, whereas the catalytic reaction occurs on the surface of lithium, which is constantly reactivated by the catalyst, an unconventional catalyst function. The order of relative reactivity is reversed in the two methods as the dominating factor switches from electronic to steric effects of the alkyl substituent. A catalytic amount of N,N‐dimethylaniline (DMA) and Li ribbon can achieve reductive lithiation. DMA is significantly cheaper than alternative catalysts, and conveniently, the Li ribbon does not require the removal of the oxide coating when DMA is used as the catalyst.  相似文献   

4.
The outcome of reactions of 1-bromo-4-tert-butylbenzene (1), a representative aryl bromide, with n-BuLi or t-BuLi at 0 degrees C in a variety of solvent systems has been investigated. The products of reactions of 1 with n-BuLi vary significantly with changes in solvent composition: 1 does not react with n-BuLi in pure heptane; the exchange reaction to give (4-tert-butylphenyl)lithium, which is slow in pure diethyl ether, is virtually quantitative in heptane containing a small quantity of THF; and the reaction of 1 with n-BuLi in THF leads to considerable coupling. Lithium-bromine exchange is the virtually exclusive outcome of reactions of 1 with t-BuLi in every solvent studied except pure heptane: the presence of a small quantity of any of a variety of structurally diverse ethers (Et(2)O, THF, THP, MTBE) in the predominantly hydrocarbon medium affords (4-tert-butylphenyl)lithium, assayed as tert-butylbenzene, in yields exceeding 97%. The only side products observed from reactions of 1 with t-BuLi are small amounts of benzyne-derived hydrocarbons.  相似文献   

5.
The formation and stabilities of complexes formed in THF between various polynuclear hydrocarbons and excess sodium and lithium metal have been studied. Anthracene and acenaphthylene, which possess high electron affinities, form dianions with either metal whilst phenanthrene forms the dianion only with lithium. Both phenanthrene and naphthalene give solely radical ions on reaction with sodium; it is found that the formation of the naphthalene dianion with lithium is inversely dependent on the naphthalene concentration.The radical anions of all four polynuclear hydrocarbons are relatively stable to the THF solvent whereas the dianions react appreciably in a matter of days to form a variety of adducts and derivatives which have been isolated and identified by NMR spectroscopy.  相似文献   

6.
Clarithromycin (6-O-methylerythromycin A) is a 14-membered macrolide antibiotic which is active in vitro against clinically important gram-positive and gram-negative bacteria. The selectivity of the methylation of the C-6 OH group is studied on erythromycin A derivatives. To understand the effect of the solvent on the methylation process, detailed molecular dynamics (MD) simulations are performed in pure DMSO, pure THF and DMSO:THF (1:1) mixture by using the anions at the C-6, C-11 and C-12 positions of 2',4"-[O-bis(TMS)]erythromycin A 9-[O-(dimethylthexylsilyl)oxime] under the assumption that the anions are stable on the sub-nanosecond time scale. The conformations of the anions are not affected by the presence of the solvent mixture. The radial distribution functions are computed for the distribution of different solvent molecules around the 'O-' of the anions. At distances shorter than 5 A, DMSO molecules are found to cluster around the C-11 anion, whereas the anion at the C-12 position is surrounded by the THF molecules. The anion at the C-6 position is not blocked by the solvent molecules. The results are consistent with the experimental finding that the methylation yield at the latter position is increased in the presence of a DMSO:THF (1:1) solvent mixture. Thus, the effect of the solvent in enhancing the yield during the synthesis is not by changing the conformational properties of the anions, but rather by creating a suitable environment for methylation at the C-6 position.  相似文献   

7.
The use of lithium 1-N,N-dimethylaminonaphthalenide (LDMAN) is found to be considerably superior in yield, ease of operation, and cost to the far more widely used lithium p,p′-di-tert-butylbiphenylide (LDBB) in reductive lithiations by aromatic radical-anions to produce organolithium compounds, provided that careful temperature control is maintained during the generation of LDMAN. The main reason for the superiority is the great ease of separation of the aromatic byproduct dimethylaminonaphthalene by a dilute acid wash.  相似文献   

8.
[structure: see text]. The lithiation reaction of cis- and trans-N-alkyl-2,3-diphenylaziridines has been investigated. While cis-diphenylaziridines do not undergo any lithiation upon treatment with organolithiums, the lithiation reaction of the trans counterparts is completely alpha-regioselective and the stereochemical course of the lithiation-trapping sequence is solvent dependent: inversion of configuration in coordinating solvents (THF or toluene/crown ether) and retention in hexane, ether, or toluene. The preparation of stereodefined functionalized N-alkyl-2,3-diphenylaziridines is described.  相似文献   

9.
Diethyl ether is a convenient solvent for the reductive lithiation of allylic phenyl thioethers without the serious complications, which occur when the reaction is carried out in tetrahydrofuran.  相似文献   

10.
Pulse radiolysis studies have been used to investigate the early phenomena in the radiolysis of acrylic acid, methyl acrylate, butyl vinyl ether, propionic acid, methyl acetate and butyl ether; the latter three solvents were used as model compounds for these vinyl monomers. The triplet state, radical cation, radical anion, and free radical of pyrene (cyclohexadienyl type) were observed to various degrees in the radiolysis of pyrene in these monomers. In acrylic acid, where the free radical and the cation dominate, the monomer polymerizes efficiently, whereas in butyl vinyl ether, where the anion dominates, polymerization does not occur. The behavior of methyl acrylate lies between that of acrylic acid and butyl vinyl ether. However, the high intensity of the electron pulses creates a high concentration of radicals leading to a short lifetime of the radical which in turn leads to a much smaller yield of polymerization. The mechanism of polymerization under high energy radiation is found to be free radical in nature.  相似文献   

11.
The electrochemical reduction of fluorene and p-cyanoaniline in DMF at a platinum electrode is initially a one-electron process which affords the corresponding readical anions. In the absence of an added proton donor, decomposition of the radical anions occurs by carbonhydrogen bond cleavage to give the conjugate bases of the starting materials; the anions subsequently slowly abstract a proton from the tetraalkylammonium cation of the supporting electrolyte to regenerate the original electroactive species. In the presence of dimethylmalonate, both radical anions rapidly electron transfer to the added proton donor. Neither self-protonation nor protonation by the added donor was observed for either radical anion. In addition to proton abstraction, 9-fluorenyl anion reacts with oxygen to give fluorene and hydroxide ion. Abstraction of a proton from fluorene by the latter species then effects a chain reaction in which 9-fluorenyl anion is the chain-carrying species. Reduction of bifluorenyl occurs with carbon-carbon bond cleavage to give 9-fluorenyl anion as the initial product. Subsequent proton transfer from bifluorenyl to 9-fluorenyl anion then yields the final products, 9-bifluorenyl anion and fluorene, in equimolar amounts.  相似文献   

12.
The reductive lithiation of alkyl and vinyl phenyl thioethers by aromatic radical anions is shown to be the most general method yet known for preparing organolithiums capable of intramolecular carbometalation of unactivated alkenes to produce five-membered rings and in one case a four-membered ring (in a far higher yield than known cases). The relative rates of cyclization for alkyllithiums are secondary > tertiary > primary, and the yields are very high. In the secondary case, the stereoselectivity is extremely high, producing a cyclopentylmethyllithium with a trans-2-alkyl substituent. A remarkable finding is that for all of the organolithiums a lithium oxyanionic group in the proximal allylic position to the alkene greatly accelerates the cyclization and leads almost exclusively to a trans relationship between the CH(2)Li group and the OLi group, the opposite relationship from that observed in intramolecular carbolithiations by allyllithiums. A mechanistic rationale for this divergence is discussed. One of the two types of proximal homoallylic lithium oxyanions exerts an analogous effect. An intriguing limitation, even occurring with the highly reactive secondary organolithium and in the presence of an allylic oxyanionic group, is the failure of intramolecular carbolithiation when a methyl group is at the terminus of the alkene.  相似文献   

13.
The regioselective ring opening of pyranosidic 4,6-p-methoxybenzylidene acetals with BH(3)/Bu(2)BOTf in THF can be tuned by adjusting the reaction temperature and reagent concentrations. Reductive cleavage at 0 degrees C resulted in the exclusive formation of 4-O-p-methoxybenzyl (PMB) ethers, whereas reaction at -78 degrees C produced 6-O-PMB ethers in high yields. The latter condition was observed to be compatible with a variety of acid-sensitive functional groups, including allyl and enol ethers. The presence of water does not interfere with reductive ring opening and may contribute toward in situ generation of H(+) as a catalyst for 6-O-PMB ether formation. Reductive cleavage under rigorously aprotic conditions is greatly decelerated, and yields only the 4-O-PMB ether. The temperature-dependent reductive cleavage of the 4,6-acetal can be described in terms of kinetic versus thermodynamic control: Lewis-acid coordination of the more accessible O-6 is favored at higher temperatures, whereas protonation of the more basic but sterically encumbered O-4 predominates at low temperatures.  相似文献   

14.
The use of lithium and a catalytic amount of an arene is a well-established methodology for the preparation of organolithium reagents that manifest greater reactivity than the classical lithium-arene solutions. In order to rationalize this conduct, the participation of a highly reduced species, the dianion, is proposed and its reactivity explored. Studies of kinetics and of distribution of products reveal that the electron-transfer (ET) reactivity profile of dilithium naphthalenide in its reaction with organic chlorides excludes alternative mechanisms of halogen-lithium exchange. The process generates organolithium compounds. The dianion thus emerges along with the radical anion as a suitable candidate for catalytic cycles in certain processes. Endowed with a higher redox potential than its radical anion counterpart, dilithium naphthalene displays a broader spectrum of reactivity and so increases the range of substrates suitable for lithiation. The reaction of dilithium naphthalene with THF is one example of the divergent reactivity of the radical anion and the dianion, which has been the source of apparent misinterpretation of results in the past and has now been appropriately addressed.  相似文献   

15.
[reaction: see text] Low temperature (-100 degrees C) dehydrohalogenation of 1,2,5,6,9,10-hexabromocyclododecane (a common fire retardant) with potassium tert-butoxide in THF followed by one-electron reduction yields the anion radical of the di-trans form of [12]annulene. This system yields a well-resolved EPR signal that reveals that most of the spin density resides on one side (the planar side) of the anion radical. Five of the carbons in this [12]annulene system are twisted from the plane of the remaining seven carbons, and the rate of rearrangement between the degenerate conformations is on the EPR time scale (k = 10(6)-10(7) s(-1)). Warming of the solution results in the formation of a sigma-bond between the two internal carbons, loss of molecular hydrogen, and consequent generation of the anion radical of heptalene. Tractable quantities of neutral heptalene can be obtained via the reoxidation of this anion radical with iodine.  相似文献   

16.
Deprotonation of an oxiranyl β-proton takes place in a stereoselective manner providing the corresponding oxiranyl ‘remote’ anion. The anion is stabilized by chelation between the lithium and the carbonyl moiety of an ester, lactone, imide, or keto-group in the form of a five-membered cyclic intermediate. Certain ester-stabilized oxiranyl anions are stable and can be left in THF solution at −78°C for several hours. The generated anions undergo a stereoselective alkylation reaction to provide products, which could be useful intermediates in the synthesis of bioactive naturally occurring α-methylene bis-γ-butyrolactones.  相似文献   

17.
The Stoichiometry of the protonation of lithium and potassium salts of benzophenone radical anions and of the lithium salt of the fluorenone radical anion by methanol has been measured and found to be [(Ar2C=O)]/[MeOH] =21. This result, which was obtained by the method of magnetic titration, implies that paramagnetism decays by the reaction between a ketyl anion and a ketyl radical (i.e., a protonated ketyl anion). The reactivities of alkali metal salts of fluorenone radical anions in relation to methanol exhibit a pronounced dependence on the nature of the counterion. No kinetic deuterium isotope effect has been found for the protonation of the lithium salt of the benzophenone radical anion in tetrahydrofuran (THF) bytert-pentyl alcohol. The lithium salt of the benzophenone radical anion inN,N,N,N-tetramethylethylenediamine (TMEDA) behaves markedly differently. Namely, its protonation by methanol exhibits 1 1 Stoichiometry and it reacts considerably more slowly withsec-butyl alkohol,K(THF)/K(TMEDA) = 2.5. Benzopinacol undergoes decomposition by an alkoxide base to diphenyl ketyl, which decays into an equimolar mixture of benzophenone and benzhydrol. The reaction follows second-order kinetics and the specific rate constants exhibit an inverse relationship with respect to the initial concentration of the alkoxide. With a very strong base benzopinacol decomposes into two diphenyl ketyl anions. On the basis of this information as well as on studies of products, relevant mechanisms are proposed for the protonation of ketyl anions and for the decomposition of aromatic pinacols in basic media.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 83–91, January, 1995.  相似文献   

18.
Zhijay Tu 《Tetrahedron》2005,61(44):10541-10551
Nitronate was generated using β-nitrostyrene and the anion of dimethyl malonate in THF at 0 °C. Subsequent treatment with PCl3 in the presence/absence of DMAP either in THF or pyridine afforded nitroalkane, chloroxime, and nitrile. Pyridine, THF, and THF-pyridine co-solvent as solvents were investigated under different conditions. With different anions of malonates containing dipolarphiles, cyclic compounds were obtained as major products indicating nitrile oxides were generated during the reaction. Based on the results, compared to that of the one reported in literature, a plausible mechanism involving nitrile oxide intermediate was proposed.  相似文献   

19.
《Tetrahedron letters》1989,30(7):845-846
Toluene radical anion generated from K metal and toluene with the assistance of crown ether has been proven effective for reductive removal of aliphatic isocyano groups.  相似文献   

20.
While alternative methods of preparing dichloroindium hydride (HInCl(2)) via the in situ reduction of InCl(3) using lithium amino borohydride (LAB) were explored, generation of HInCl(2) from the reduction of InCl(3) by sodium borohydride (NaBH(4)) was also re-evaluated for comparison. The reductive capability of the InCl(3)/NaBH(4) system was found to be highly dependent on the solvent used. Investigation by (11)B NMR spectroscopic analyses indicated that the reaction of InCl(3) with NaBH(4) in THF generates HInCl(2) along with borane-tetrahydrofuran (BH(3)·THF) in situ. Nitriles underwent reduction to primary amines under optimized conditions at 25 °C using 1 equiv of anhydrous InCl(3) with 3 equiv of NaBH(4) in THF. A variety of aromatic, heteroaromatic, and aliphatic nitriles were reduced to their corresponding primary amine in 70-99% isolated yields. Alkyl halide and nitrile functional groups were reduced in tandem by utilizing the reductive capabilities of both HInCl(2) and BH(3)·THF in a one-pot reaction. Finally, the selective reduction of the carbon bromine bond in the presence of nitriles was achieved by generating HInCl(2) via the reduction InCl(3) with NaBH(4) in CH(3)CN or with lithium dimethylaminoborohydride (MeLAB) in THF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号