首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
基于大模场面积掺镱光纤搭建了全光纤1030 nm高功率窄线宽光纤激光主振荡功率放大系统,实现了3004 W的最高功率输出,斜率效率69.27%,是目前报道的输出功率最高的1030 nm波段近衍射极限光纤激光器。最高输出功率时,x,y方向的光束质量因子分别为1.169,1.174,3 dB光谱宽度为0.18 nm,放大自发辐射抑制比达到37 dB。  相似文献   

2.
A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 m W and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-m W maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission(ASE) nor harmful oscillation around 1030 nm is observed. Moreover,through a two-stage all-fiber-integrated amplifier, an output power of 740 m W is generated with a pulse width of 200 ps.  相似文献   

3.
姜曼  肖虎  周朴  王小林  刘泽金 《物理学报》2013,62(4):44210-044210
开展了基于同带抽运的高功率、低量子亏损的掺镱光纤放大器实验研究. 搭建了一台输出功率为21 W的1018 nm短波 长掺镱光纤激光器, 并利用其对双包层掺镱光纤进行同带抽运, 获得18.6 W的1080 nm波段激光输出, 光-光转换效率高达90.86%. 关键词: 光纤放大器 同带抽运 双包层光纤 转换效率  相似文献   

4.
高重复频率飞秒掺镱光纤放大器   总被引:1,自引:1,他引:0  
 数值分析了掺镱单模光纤放大器的最佳增益光纤长度,并在实验上对掺镱单模光纤放大器和光栅对压缩器进行了研究。以最大平均输出功率为7 mW、重复频率为25.4 MHz、脉宽为56 ps的被动锁模环形腔掺镱光纤激光器作为种子脉冲,用250 mW的976 nm单模半导体激光器分别泵浦3种不同长度的掺镱单模光纤,对种子光进行放大,并用光栅对压缩器对放大后的脉冲在不同光栅距离上进行了压缩实验研究。当掺镱单模光纤长度为1.2 m时得到了较好的放大效果,种子脉冲被放大到140 mW,相应的增益为13 dB,放大后的单脉冲能量为5.5 nJ。在光栅距离为14.1 cm时获得了最短440 fs的脉冲,压缩后的功率为43 mW,相应的峰值功率为3.8 kW。  相似文献   

5.
Lee JH  Ryu UC  Park N 《Optics letters》1999,24(5):279-281
A novel structure that converts wasted backward amplified spontaneous emission (ASE) to seed photons for the amplifier stage is suggested for a high-power erbium-doped fiber (EDF) broadband source. A considerable increase in output power and bandwidth extension was achieved by placement of a segment of passive EDF in front of the amplifier stage, thus recycling backward ASE as the secondary pumping source for the passive EDF seed photon generator. Experimental results showed a dramatic increase in output ASE power of more than 10 dB for most radiation bands from 1540 to 1620 nm with the simple addition of an unpumped EDF segment to the ordinary fluorescence-source structure.  相似文献   

6.
Di Teodoro F  Brooks CD 《Optics letters》2005,30(24):3299-3301
A Q-switched microchip laser generating 1064 nm wavelength, subnanosecond pulses at a 13.4 kHz repetition rate was used to seed a dual-stage amplifier featuring a 40 microm core Yb-doped photonic-crystal fiber (PCF) as the power amplifier. From this source, we obtained diffraction-limited (M2 = 1.05), approximately 450 ps pulses of energy > 0.7 mJ, peak power in excess of 1.5 MW, and an average power of approximately 9.5 W. By further amplifying the PCF output in a multimode 140 microm core Yb-doped fiber, we generated a peak power in excess of 4.5 MW, the highest obtained in a fiber source to our knowledge.  相似文献   

7.
We present review on recent progress on high power Yb-doped fiber laser in a variety of oscillation spectral ranges. According to Kurkov (Laser Phys. Lett. 2006), the oscillation spectral range of YDFLs can be divided into three bands: convenient (C-band), short (S-band), and long (L-band). For the C-band YDFL, tandem-pumped high power radiation by using 1018 nm fiber laser or 1030 nm thin-disk laser is reviewed. For the S-band YDFL, three mainly technical solutions, i.e., special designed fiber, the employment of photonic crystal fiber (PCF), and tandem pumping using 930 nm Nd-doped fiber laser are presented. For the L-band laser, active heating or self-heating the active fiber can help the long-wavelength oscillation. Fiber Raman laser or amplifier can also boost the power of L-band YDFL up. Some discussions and prospective predictions are proposed at the end of this paper.  相似文献   

8.
A pulsed pumped Yb-doped double-clad fiber (DCF) master-oscillator power amplifier (MOPA) at low repetition rate is reported. Seeded by a passive Q-switched Nd:YAG microchip laser, the fiber amplifier can generate 167-kW peak-power and 0.83-ns duration pulses at 200-Hz repetition rate. Because of the pulsed pump approach, the amplified spontaneous emission (ASE) and the spurious lasing between pulses are well avoided, and the repetition rate can be set freely from single-shot to 1 kHz. Peak power scaling limitations that arise from the fiber facet damage are discussed.  相似文献   

9.
为抑制低重复频率高能脉冲光纤主振荡功率放大(MOPA)系统的放大自发辐射(ASE)效应,达到脉冲泵浦的最佳放大效果,需要对泵浦脉宽进行优化。基于求解速率方程和功率传输方程,理论研究了脉冲泵浦下掺镱光纤放大器上能级粒子数密度、光纤内存储能量、正反向放大自发辐射的瞬态响应。在给定的泵浦功率、光纤长度、纤芯面积和掺杂数密度等参数下,数值计算得到的优化泵浦脉宽为793 s。此外,实验测定了ASE的建立时间; 通过调节泵浦脉宽,测定了脉冲泵浦下掺镱光纤放大器的放大效果,实验中得到的泵浦脉宽的优化值为800 s,证明了数值模拟的正确性。  相似文献   

10.
Operation of Yb-doped fiber laser (YDFL) at short wavelengths (about 1030 nm) is known to be possible with relatively short active fibers. Frequency doubling of such a laser is studied. It is shown that, in contrast to conventional YDFLs, operating around 1080 nm, the short-wavelength YDFL does not exhibit significant spectral broadening induced by nonlinear effects. Thus, the generated spectrum remains narrower than the FBG reflection profile, which allows an almost twofold intracavity intensity enhancement. Consequently, the second harmonic generation in the KTP crystal placed inside the YDFL cavity appears more effective than the generation in the single-pass scheme by an order of magnitude. An output power of about 0.4 W at a wavelength of 515 nm is demonstrated.  相似文献   

11.
A compact Yb-doped fiber laser (YDFL) based on a tunable fiber Bragg grating (FBG) with ~6 W output power and ~45 nm tuning around 1080 nm has been developed. The laser output power and its spectral width (~0.15 nm) do not change significantly at the tuning, while the FBG reflection coefficient increases with an increase in FBG compression. It has been shown that this increase is due to stress-induced changes in the FBG’s refractive-index modulation amplitude. Intracavity frequency doubling in the YDFL has also been performed. About 0.4 W of green radiation with tuning in the range 540–548 nm has been achieved with a KTP nonlinear crystal.  相似文献   

12.
分别使用976 nm半导体激光器和1040 nm光纤激光器作为泵浦源,实现了1137 nm长波光纤激光器的出光,输出功率均超过百mW。激光器采用相同的线性腔结构,高反光栅和低反光栅的反射率分别为99.6%和39.7%,增益介质是一段8 m长的掺镱光纤,纤芯直径5 m。当976 nm半导体泵浦功率为912 mW时,1137 nm激光输出功率为182 mW,对应的斜率效率为28.5%;当1040 nm激光功率为1.59 W时,输出的1137 nm激光功率为278 mW,斜率效率约为25%。在此基础上对两种泵浦方式进行了对比分析。  相似文献   

13.
A compact supe uorescent source based on an Yb-doped double-cladding fiber amplifier is described. The packaged amplifier is pumped at 975 nm by side-coupling emission from a 2.0-W broad-stripe laser diode through an imbedded V groove. The fiber source generates 485 mW of broadband emission centered at 1055 nm with a 41-nm FWHM flat power spectrum.  相似文献   

14.
庞璐  王标  衣永青  潘蓉  刘君  耿鹏程  宁鼎 《强激光与粒子束》2018,30(11):110102-1-110102-3
采用化学气相沉积结合气相/液相复合掺杂方式制备30/600 μm掺镱双包层光纤,石英纤芯中的掺杂组分为Yb2O3, Al2O3,P2O5。基于976 nm发光二极管反向抽运方式,构建全光纤化的主控振荡器功率放大器结构对增益光纤进行测试。实验中,种子源功率为189 W,当泵浦总功率为4747 W时,激光输出功率为4120 W,放大级光光效率为85%,3 dB带宽为1.6 nm。激光器连续工作1 h,激光功率稳定在4100 W,未发生明显的功率衰退现象。  相似文献   

15.
A Yb-doped double-cladding fiber amplifier is v-groove side pumped by a 100-mum -wide, broad-stripe, 975-nm laser diode. The amplifier exhibits, separately, 39% electrical-to-optical conversion efficiency, 89% internal optical-to-optical conversion efficiency, 4-W output power at 1060 nm, and a small-signal gain of 53 dB.  相似文献   

16.
Liu  H. J.  Li  X. F. 《Laser Physics》2011,21(12):2118-2121
A compact tunable high power picosecond green laser pulse source based on frequency doubling of an Yb-doped fiber amplifier seeded by a gain switch laser diode has been developed. The fiber amplifier generates the picosecond infrared pulses with average power of 10.3 W, repetition rate of 1 MHz, pulse duration of 150 ps, and tunable range of 20 nm around 1064 nm. For underwater use, the tunable output infrared pulses are frequency doubled into picosecond green laser pulses, which can be tuned from 527 to 537 nm with average power of more than 1.1 W, corresponding to an overall conversion efficiency of 10.7% by a BBO nonlinear crystal. This kind of laser source will have potential application for underwater optical communication.  相似文献   

17.
采用单模放大和包层抽运放大的级联方式,在主振荡功率放大系统中,将平均功率0.5 mW、脉宽20 ns以及重复频率为50 kHz的光脉冲安全放大到平均功率0.6 W、峰值功率600 W的脉冲输出.相应增益为30.8 dB.放大输出的脉冲信号信噪比为30 dB,脉冲形状基本没有发生畸变.在前置放大结构中抽运光通过级联熔融拉锥型波分复用器耦合,有效确保了抽运源(976 nm)的正常工作.  相似文献   

18.
We report a design for a power-scalable all-fiber passively Q-switched laser that uses a large mode area Yb-doped fiber as a gain medium adiabatically tapered to an unpumped single-mode Yb-doped fiber, which serves as a saturable absorber. Through the use of a comprehensive numerical simulator, we demonstrate a passively Q-switched 1030 nm pulsed laser with 14 ns pulse duration and 0.5 mJ pulse energy operating at 200 kHz repetition rate. The proposed configuration has a potential for orders of magnitude of improvement in both the pulse energies and durations compared to the previously reported result. The key mechanism for this improvement relates to the ratio of the core areas between the pumped inverted large mode area gain fiber and the unpumped doped single-mode fiber.  相似文献   

19.
A novel (to our knowledge) dual-core ytterbium (Yb(3+)) doped fiber, as an optically pumped amplifier, boosts the output power from a 1060 nm swept source laser beyond 250 mW, while providing a wavelength tuning range of 93 nm, for optical coherence tomography (OCT) imaging. The design of the dual-core Yb-doped fiber amplifier and its multiple wavelength optical pumping scheme to optimize output bandwidth are discussed. Use of the dual-core fiber amplifier showed no appreciable degradation to the coherence length of the seed laser. The signal intensity improvement of this amplifier is demonstrated on a multichannel in vivo OCT imaging system at 1060 nm.  相似文献   

20.
采用单模放大和包层抽运放大的级联方式,在主振荡功率放大系统中,将平均功率0.5 mW、脉宽20 ns以及重复频率为50 kHz的光脉冲安全放大到平均功率0.6 W、峰值功率600 W的脉冲输出.相应增益为30.8 dB.放大输出的脉冲信号信噪比为30 dB,脉冲形状基本没有发生畸变.在前置放大结构中抽运光通过级联熔融拉锥型波分复用器耦合,有效确保了抽运源(976 nm)的正常工作.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号