首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bent‐crystal spectrometer based on the Rowland circle geometry has been installed and tested on the BM30b/FAME beamline at the European Synchrotron Radiation Facility to improve its performances. The energy resolution of the spectrometer allows different kinds of measurements to be performed, including X‐ray absorption spectroscopy, resonant inelastic X‐ray scattering and X‐ray Raman scattering experiments. The simplicity of the experimental device makes it easily implemented on a classical X‐ray absorption beamline. This improvement in the fluorescence detection is of particular importance when the probed element is embedded in a complex and/or heavy matrix, for example in environmental sciences.  相似文献   

2.
X‐ray absorption and scattering spectroscopies involving the 3d transition‐metal K‐ and L‐edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M‐edges, which are below 100 eV. Synchrotron‐based X‐ray sources can have higher energy resolution at M‐edges. M‐edge X‐ray absorption spectroscopy (XAS) and resonant inelastic X‐ray scattering (RIXS) could therefore provide complementary information to K‐ and L‐edge spectroscopies. In this study, M2,3‐edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M2,3‐edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different dd transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M‐edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high‐sensitivity and high‐resolution superconducting tunnel junction X‐ray detectors below 100 eV is also illustrated and discussed.  相似文献   

3.
In the past seven years the size of the known protein sequence universe has been rapidly expanding. At present, more then five million entries are included in the UniProtKB/TrEMBL protein database. In this context, a retrospective evaluation of recent X‐ray absorption studies is undertaken to assess its potential role in metalloproteomics. Metalloproteomics is the structural and functional characterization of metal‐binding proteins. This is a new area of active research which has particular relevance to biology and for which X‐ray absorption spectroscopy is ideally suited. In the last three years, biological X‐ray absorption spectroscopy (BioXAS) has been included among the techniques used in post‐genomics initiatives for metalloprotein characterization. The emphasis of this review is on the progress in BioXAS that has emerged from recent meetings in 2007–2008. Developments required to enable BioXAS studies to better contribute to metalloproteomics throughput are also discussed. Overall, this paper suggests that X‐ray absorption spectroscopy could have a higher impact on metalloproteomics, contributing significantly to the understanding of metal site structures and of reaction mechanisms for metalloproteins.  相似文献   

4.
Spray deposition of thin films and coatings is a widely used manufacturing process owing to its low cost, versatility and simple implementation. The objective of the presented experiments was to investigate whether X‐ray absorption measurements on solutes carried by aerosols are possible, and what count rates can be achieved depending on solution flow through and the resulting mass density in the interrogation volume. The investigated prototypical spray aerosol was InCl3 dissolved in water or ethanol dispersed via an ultrasonic nebulizer. InCl3 spray is essential for the ion layer gas reaction process used for the deposition of In2S3 buffer layers for highly efficient chalcopyrite solar cells. The discussed experiments demonstrate that measurements are possible, but that the achievement of good signal‐to‐noise ratios requires extended sampling times and concentrated solutions.  相似文献   

5.
Here the correlation between the chemical shift in X‐ray absorption spectroscopy, the geometrical structure and the formal valence state of the Mn atom in mixed‐valence manganites are discussed. It is shown that this empirical correlation can be reliably used to determine the formal valence of Mn, using either X‐ray absorption spectroscopy or resonant X‐ray scattering techniques. The difficulties in obtaining a reliable comparison between experimental XANES spectra and theoretical simulations on an absolute energy scale are revealed. It is concluded that the contributions from the electronic occupation and the local structure to the XANES spectra cannot be separated either experimentally or theoretically. In this way the geometrical and electronic structure of the Mn atom in mixed‐valence manganites cannot be described as a bimodal distribution of the formal integer Mn3+ and Mn4+ valence states corresponding to the undoped references.  相似文献   

6.
A new setup and commissioning of transient X‐ray absorption spectroscopy are described, based on the high‐repetition‐rate laser pump/X‐ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high‐repetition‐rate and high‐power laser is incorporated into the setup with in‐house‐built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser‐on and laser‐off signals simultaneously. The capability of picosecond transient X‐ray absorption spectroscopy measurement was demonstrated for a photo‐induced spin‐crossover iron complex in 6 mM solution with 155 kHz repetition rate.  相似文献   

7.
X‐ray absorption spectra calculated within an effective one‐electron approach have to be broadened to account for the finite lifetime of the core hole. For methods based on Green's function this can be achieved either by adding a small imaginary part to the energy or by convoluting the spectra on the real axis with a Lorentzian. By analyzing the Fe K‐ and L2,3‐edge spectra it is demonstrated that these procedures lead to identical results only for energies higher than a few core‐level widths above the absorption edge. For energies close to the edge, spurious spectral features may appear if too much weight is put on broadening via the imaginary energy component. Special care should be taken for dichroic spectra at edges which comprise several exchange‐split core levels, such as the L3‐edge of 3d transition metals.  相似文献   

8.
A new theoretical approach and computational package, FDMX, for general calculations of X‐ray absorption fine structure (XAFS) over an extended energy range within a full‐potential model is presented. The final‐state photoelectron wavefunction is calculated over an energy‐dependent spatial mesh, allowing for a complete representation of all scattering paths. The electronic potentials and corresponding wavefunctions are subject to constraints based on physicality and self‐consistency, allowing for accurate absorption cross sections in the near‐edge region, while higher‐energy results are enabled by the implementation of effective Debye–Waller damping and new implementations of second‐order lifetime broadening. These include inelastic photoelectron scattering and, for the first time, plasmon excitation coupling. This is the first full‐potential package available that can calculate accurate XAFS spectra across a complete energy range within a single framework and without fitted parameters. Example spectra are provided for elemental Sn, rutile TiO2 and the FeO6 octahedron.  相似文献   

9.
The resonant scattering and diffraction beamline P09 at PETRA III at DESY is equipped with a 14 T vertical field split‐pair magnet. A helium‐3 refrigerator is available that can be fitted inside the magnet's variable‐temperature insert. Here the results of a series of experiments aimed at determining the beam conditions permitting operations with the He‐3 insert are presented. By measuring the tetragonal‐to‐orthorhombic phase transition occurring at 2.1 K in the Jahn–Teller compound TmVO4, it is found that the photon flux at P09 must be attenuated down to 1.5 × 109 photons s?1 for the sample to remain at temperatures below 800 mK. Despite such a reduction of the incident flux and the subsequent use of a Cu(111) analyzer, the resonant X‐ray magnetic scattering signal at the Tm LIII absorption edge associated with the spin‐density wave in TmNi2B2C below 1.5 K is intense enough to permit a complete study in magnetic field and at sub‐Kelvin temperatures to be carried out.  相似文献   

10.
Charge transfer multiplet (CTM) theory is a computationally undemanding and highly mature method for simulating the soft X‐ray spectra of first‐row transition metal complexes. However, CTM theory has seldom been applied to the simulation of excited‐state spectra. In this article, the CTM4XAS software package is extended to simulate M2,3‐ and L2,3‐edge spectra for the excited states of first‐row transition metals and also interpret CTM eigenfunctions in terms of Russell–Saunders term symbols. These new programs are used to reinterpret the recently reported excited‐state M2,3‐edge difference spectra of photogenerated ferrocenium cations and to propose alternative assignments for the electronic state of these cations responsible for the spectroscopic features. These new programs were also used to model the L2,3‐edge spectra of FeII compounds during nuclear relaxation following photoinduced spin crossover and to propose spectroscopic signatures for their vibrationally hot states.  相似文献   

11.
Non‐resonant inelastic X‐ray scattering of core electrons is a prominent tool for studying site‐selective, i.e. momentum‐transfer‐dependent, shallow absorption edges of liquids and samples under extreme conditions. A bottleneck of the analysis of such spectra is the appropriate subtraction of the underlying background owing to valence and core electron excitations. This background exhibits a strong momentum‐transfer dependence ranging from plasmon and particle–hole pair excitations to Compton scattering of core and valence electrons. In this work an algorithm to extract the absorption edges of interest from the superimposed background for a wide range of momentum transfers is presented and discussed for two examples, silicon and the compound silicondioxide.  相似文献   

12.
The X‐ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi‐purpose high‐energy X‐ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double‐Laue crystal monochromator to provide X‐rays over a large energy range (30–70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi‐lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.  相似文献   

13.
Recent developments in X‐ray spectroscopy in the last decade are reviewed. A specific emphasis is placed on displaying the strong natural connection between X‐ray spectroscopy and materials science. Brief explanations of several X‐ray spectroscopic methods are given. X‐ray spectroscopic instruments such as table‐top X‐ray sources are discussed in detail, whereas those employing synchrotron and other sources are briefly addressed. The spectroscopic methods and results from materials investigations are reviewed according to their positions in a 3D parameter space of time, length, and energy. New experimental measurements on atoms, molecules, nanomaterials, and bulk materials that include insulators, semiconductors, metals and magnetic materials using both static and time‐resolved methods are reviewed.  相似文献   

14.
Grazing‐incidence small‐angle X‐ray scattering (GISAXS) measurements with soft X‐rays have been applied to Ge nanodots capped with a Si layer. Spatially anisotropic distribution of nanodots resulted in strongly asymmetric GISAXS patterns in the qy direction in the soft X‐ray region, which have not been observed with conventional hard X‐rays. However, such apparent differences were explained by performing a GISAXS intensity calculation on the Ewald sphere, i.e. taking the curvature of Ewald sphere into account.  相似文献   

15.
The current status of the TwinMic beamline at Elettra synchrotron light source, that hosts the European twin X‐ray microscopy station, is reported. The X‐ray source, provided by a short hybrid undulator with source size and divergence intermediate between bending magnets and conventional undulators, is energy‐tailored using a collimated plane‐grating monochromator. The TwinMic spectromicroscopy experimental station combines scanning and full‐field imaging in a single instrument, with contrast modes such as absorption, differential phase, interference and darkfield. The implementation of coherent diffractive imaging modalities and ptychography is ongoing. Typically, scanning transmission X‐ray microscopy images are simultaneously collected in transmission and differential phase contrast and can be complemented by chemical and elemental analysis using across‐absorption‐edge imaging, X‐ray absorption near‐edge structure or low‐energy X‐ray fluorescence. The lateral resolutions depend on the particular imaging and contrast mode chosen. The TwinMic range of applications covers diverse research fields such as biology, biochemistry, medicine, pharmacology, environment, geochemistry, food, agriculture and materials science. They will be illustrated in the paper with representative results.  相似文献   

16.
Substructure and phase composition of silicon suboxide films containing silicon nanocrystals and implanted with carbon have been investigated by means of the X‐ray absorption near‐edge structure technique with the use of synchrotron radiation. It is shown that formation of silicon nanocrystals in the films' depth (more than 60 nm) and their following transformation into silicon carbide nanocrystals leads to abnormal behaviour of the X‐ray absorption spectra in the elementary silicon absorption‐edge energy region (100–104 eV) or in the silicon oxide absorption‐edge energy region (104–110 eV). This abnormal behaviour is connected to X‐ray elastic backscattering on silicon or silicon carbide nanocrystals located in the silicon oxide films depth.  相似文献   

17.
The optical design of the BOREAS beamline operating at the ALBA synchrotron radiation facility is described. BOREAS is dedicated to resonant X‐ray absorption and scattering experiments using soft X‐rays, in an unusually extended photon energy range from 80 to above 4000 eV, and with full polarization control. Its optical scheme includes a fixed‐included‐angle, variable‐line‐spacing grating monochromator and a pair of refocusing mirrors, equipped with benders, in a Kirkpatrick–Baez arrangement. It is equipped with two end‐stations, one for X‐ray magnetic circular dichroism and the other for resonant magnetic scattering. The commissioning results show that the expected beamline performance is achieved both in terms of energy resolution and of photon flux at the sample position.  相似文献   

18.
A systematic study is presented in which multilayers of different composition (W/Si, Mo/Si, Pd/B4C), periodicity (from 2.5 to 5.5 nm) and number of layers have been characterized. In particular, the intrinsic quality (roughness and reflectivity) as well as the performance (homogeneity and coherence of the outgoing beam) as a monochromator for synchrotron radiation hard X‐ray micro‐imaging are investigated. The results indicate that the material composition is the dominating factor for the performance. By helping scientists and engineers specify the design parameters of multilayer monochromators, these results can contribute to a better exploitation of the advantages of multilayer monochromators over crystal‐based devices; i.e. larger spectral bandwidth and high photon flux density, which are particularly useful for synchrotron‐based micro‐radiography and ‐tomography.  相似文献   

19.
The unoccupied electronic structures of 5 nm thick high permittivity (k) oxides (HfO2, ZrO2, and Al2O3) and SiO2 films on Ge substrates were examined using O K‐edge X‐ray absorption spectroscopy. Comparative studies with those on Si substrates showed contrasts in the conduction bands, which should be due to the formation of interface states. In the Al2O3 and SiO2 films, GeO2 layers are formed at the interface and they suppress in part the formation of detrimental germanate phases. In contrast, in the HfO2 and ZrO2 films, no signature of the Ge‐oxide phase is observed but some germanate phases are expected to prevail, suggesting a degradation of the gate oxide characteristics. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A new multi‐purpose operando electrochemical cell was designed, constructed and tested on the Swiss–Norwegian Beamlines BM01 and BM31 at the European Synchrotron Radiation Facility. Single‐crystal sapphire X‐ray windows provide a good signal‐to‐noise ratio, excellent electrochemical contact because of the constant pressure between the electrodes, and perfect electrochemical stability at high potentials due to the inert and non‐conductive nature of sapphire. Examination of the phase transformations in the Li1–xFe0.5Mn0.5PO4 positive electrode (cathode) material at C/2 and 10C charge and discharge rates, and a study of the valence state of the Ni cations in the Li1–xNi0.5Mn1.5O4 cathode material for Li‐ion batteries, revealed the applicability of this novel cell design to diffraction and spectroscopic investigations of high‐power/high‐voltage electrodes for metal‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号