首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the potential of hydrogen peroxide‐generated oxygen gas‐based phase contrast imaging (PCI) for visualizing mouse hepatic portal veins. The O2 gas was made from the reaction between H2O2 and catalase. The gas production was imaged by PCI in real time. The H2O2 was injected into the enteric cavity of the lower sigmoid colon to produce O2 in the submucosal venous plexus. The generated O2 gas could be finally drained into hepatic portal veins. Absorption contrast imaging (ACI) and PCI of O2‐filled portal veins were performed and compared. PCI offers high resolution and real‐time visualization of the O2 gas production. Compared with O2‐based ACI, O2‐based PCI significantly enhanced the revealing of the portal vein in vivo. It is concluded that O2‐based PCI is a novel and promising imaging modality for future studies of portal venous disorders in mice models.  相似文献   

2.
Preoperative portal vein embolization (PVE) is employed clinically to avoid postoperative liver insufficiency. Animal models are usually used to study PVE in terms of mechanisms and pathophysiological changes. PVE is formerly monitored by conventional absorption contrast imaging (ACI) with iodine contrast agent. However, the side effects induced by iodine can give rise to animal damage and death. In this study, the feasibility of using phase contrast imaging (PCI) to show PVE using homemade CO2 microbubbles in living rats has been investigated. CO2 gas was first formed from the reaction between citric acid and sodium bicarbonate. The CO2 gas was then encapsulated by egg white to fabricate CO2 microbubbles. ACI and PCI of CO2 microbubbles were performed and compared in vitro. An additional increase in contrast was detected in PCI. PCI showed that CO2 microbubbles gradually dissolved over time, and the remaining CO2 microbubbles became larger. By PCI, the CO2 microbubbles were found to have certain stability, suggesting their potential use as embolic agents. CO2 microbubbles were injected into the main portal trunk to perform PVE in living rats. PCI exploited the differences in the refractive index and facilitated clear visualization of the PVE after the injection of CO2 microbubbles. Findings from this study suggest that homemade CO2 microbubbles‐based PCI is a novel modality for preclinical PVE research.  相似文献   

3.
Using a two‐crystal‐interferometer‐based phase‐contrast X‐ray imaging system, the portal vein, capillary vessel area and hepatic vein of live rats were revealed sequentially by injecting physiological saline via the portal vein. Vessels greater than 0.06 mm in diameter were clearly shown with low levels of X‐rays (552 µGy). This suggests that in vivo vessel imaging of small animals can be performed as conventional angiography without the side effects of the presently used iodine contrast agents.  相似文献   

4.
Many spinal cord circulatory disorders present the substantial involvement of small vessel lesions. The central sulcus arteries supply nutrition to a large part of the spinal cord, and, if not detected early, lesions in the spinal cord will cause irreversible damage to the function of this organ. Thus, early detection of these small vessel lesions could potentially facilitate the effective diagnosis and treatment of these diseases. However, the detection of such small vessels is beyond the capability of current imaging techniques. In this study, an imaging method is proposed and the potential of phase‐contrast imaging (PCI)‐ and attenuation‐contrast imaging (ACI)‐based synchrotron radiation for high‐resolution tomography of intramedullary arteries in mouse spinal cord is validated. The three‐dimensional vessel morphology, particularly that of the central sulcus arteries (CSA), detected with these two imaging models was quantitatively analyzed and compared. It was determined that both PCI‐ and ACI‐based synchrotron radiation can be used to visualize the physiological arrangement of the entire intramedullary artery network in the mouse spinal cord in both two dimensions and three dimensions at a high‐resolution scale. Additionally, the two‐dimensional and three‐dimensional vessel morphometric parameter measurements obtained with PCI are similar to the ACI data. Furthermore, PCI allows efficient and direct discrimination of the same branch level of the CSA without contrast agent injection and is expected to provide reliable biological information regarding the intramedullary artery. Compared with ACI, PCI might be a novel imaging method that offers a powerful imaging platform for evaluating pathological changes in small vessels and may also allow better clarification of their role in neurovascular disorders.  相似文献   

5.
The structural effect of biodegradable macromolecular magnetic resonance imaging (MRI) contrast agents, polydisulfide gadolinium (Gd)(III) chelates, on their in vitro degradability, and cardiovascular and tumor imaging were evaluated in mice. Polydisulfide Gd(III) chelates, Gd-DTPA cystamine copolymers (GDCC), Gd-DTPA l-cystine copolymers (GDCP), Gd-DTPA d-cystine copolymers (dGDCP) and Gd-DTPA glutathione (oxidized) copolymers (GDGP), with different sizes and narrow molecular weight distribution were prepared and evaluated both in vitro and in vivo in mice bearing MDA-MB-231 tumor xenografts. GDGP with large steric hindrance around the disulfide bonds had greater T(1) and T(2) relaxivities than GDCC, GDCP and dGDCP. The degradability of the polydisulfide by the endogenous thiols decreased with increasing steric effects around the disulfide bonds in the order of GDCC>GDCP, dGDCP>GDGP. The size and degradability of the contrast agents had a significant impact on vascular contrast enhancement kinetics. The agents with a large size and low degradability resulted in more prolonged vascular enhancement than the agents with a small size and high degradability. It seems that the size and degradability of the agents did not significantly affect tumor enhancement. All agents resulted in significant contrast enhancement in tumor tissue. This study has demonstrated that the vascular enhancement kinetics of the polydisulfide MRI contrast agents can be controlled by their sizes and structures. The polydisulfide Gd(III) chelates are promising biodegradable macromolecular MRI contrast agents for magnetic resonance angiography and cancer imaging.  相似文献   

6.
To evaluate the diagnostic value of combined contrast enhanced MRA (ce-MRA) and MRI compared to that of intra-arterial DSA (i.a.DSA) in liver transplantation, transjugular porto-systemic (TIPSS) and spleno-renal shunt candidates. 50 patients in the workup for liver transplantation underwent ce-MRA/MRI and i.a.DSA within a three days interval. Both examinations were assessed with respect to vessel anatomy and patency of the arterial, portal venous, porto-systemic collateral and systemic venous system. The results were compared with the intra-operative findings when available. Malignancy detection in ce-MRA/MRI and i.a.DSA were compared. There are no significant differences for the arterial part of the vascular supply to the liver that is important for transplantation. Although the differences for the portal system are not significant, the difference between the two techniques is of clinical importance because i.a.DSA failed to detect portal vein occlusion in 4 patients. Ce-MRA is significantly better for the detection of collaterals (p < 0.001) and the assessment of the inferior vena cava, the hepatic and the renal veins (p < 0.001). Although the detection of liver malignancy is poor in both techniques, ce-MRA/MRI is superior to i.a.DSA. This study shows that a one step diagnostic approach with a combination of ce-MRA and MRI is a valuable radiological tool with a superior diagnostic strength compared to i.a.DSA in the liver transplantation and shunt candidate. Therefore, ce-MRA/MRI should replace i.a.DSA in these patients groups.  相似文献   

7.
Li Z  Li W  Li X  Pei F  Li Y  Lei H 《Magnetic resonance imaging》2007,25(3):412-417
The two gadolinium (Gd) polyoxometalates, K(15)[Gd(BW(11)O(39))(2)] [Gd(BW(11))(2)] and K(17)[Gd(CuW(11)O(39))(2)] [Gd(CuW(11))(2)] have been evaluated by in vivo and in vitro experiments as the candidates of potential tissue-specific magnetic resonance imaging (MRI) contrast agents. T(1) relaxivities of 17.12 mM(-1) x s(-1) for Gd(BW(11))(2) and 19.95 mM(-1) x s(-1) for Gd(CuW(11))(2) (400 MHz, 25 degrees C) were much higher than that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in bovine serum albumin and human serum transferrin solutions were also reported. After administration of Gd(BW(11))(2) and Gd(CuW(11))(2) to Wistar rats, MRI showed longer and remarkable enhancement in rat liver and favorable renal excretion capability. The signal intensity increased by 37.63+/-3.45% for the liver during the whole imaging period (100 min) and by 61.47+/-10.03% for kidney within 5-40 min after injection at 40+/-1-micromol x kg(-1) dose for Gd(CuW(11))(2), and Gd(BW(11))(2) induced 50.44+/-3.51% enhancement in the liver in 5-50-min range and 61.47+/-10.03% enhancement for kidney within 5-40 min after injection at 39+/-4 micromol x kg(-1) dose. In vitro and in vivo study showed that Gd(BW(11))(2) and Gd(CuW(11))(2) are favorable candidates as tissue-specific contrast agents for MRI.  相似文献   

8.
Two gadolinium polyoxometalates, K(9)GdW(10)O(36) and K(11)[Gd(PW(11)O(39))(2)], have been evaluated both in vivo and in vitro as candidates for tissue-specific MRI contrast agents. T(1)-relaxivities of 6.89 mM(-1). s(-1) for K(9)GdW(10)O(36) and 5.27 mM(-1). s(-1) for K(11)[Gd(PW(11)O(39))(2)] are slightly higher than that of the commercial MRI contrast agent (Gd-DTPA). Both compounds bind with bovine serum albumin and human serum transferrin and favorable liver-specific contrast enhancement in in vivo MRI with Sprague-Dawley rats after i.v. administration has been demonstrated. Imaging studies demonstrate that the two agents have a long residence time, showing MR signal enhancement in the liver for more than 40 min, longer than commercially available contrast agents. In vivo and in vitro assays showed that GdW(10) and Gd(PW(11))(2) are promising liver-specific MRI contrast agents and GdW(10) may be used in the diagnosis of the pathological state. However, with the higher acute toxicity, the two gadolinium polyoxometalates need to be modified and studied further before clinical use.  相似文献   

9.
The resolution and signal to noise ratio of EPR imaging and T(1)-weighted MRI were compared using an identical phantom. Several solutions of nitroxyl contrast agents with different EPR spectral shapes were tested. The feasibility of T(1)-weighted MRI to detect nitroxyl contrast agents was described. T(1)-weighted MRI can detect nitroxyl contrast agents with a complicated EPR spectrum easier and quicker; however, T(1)-weighted MRI has less quantitative ability especially for lipophilic nitroxyl contrast agents, because T(1)-relaxivity, i.e. accessibility to water, is affected by the hydrophilic/hydrophobic micro-environment of a nitroxyl contrast agent. The less quantitative ability of T(1)-weighted MRI may not be a disadvantage of redox imaging, which obtains reduction rate of a nitroxyl contrast. Therefore, T(1)-weighted MRI has a great advantage to check the pharmacokinetics of newly modified and/or designed nitroxyl contrast agents.  相似文献   

10.
BackgroundFerumoxytol, an FDA-approved superparamagnetic iron oxide nanoparticle (SPION) preparation used for the treatment of iron deficiency anemia, is also known to be taken up by macrophages in areas of infection or inflammation, where it produces negative contrast changes on T2-weighted MR images.PurposeWe sought to compare Ferumoxytol-induced MRI contrast changes with those observed using standard-of-care Gadolinium in patients presenting with symptoms suggestive of osteomyelitis.SubjectsOut of eighteen enrolled patients, 15 had MR imaging with both ferumoxytol and gadolinium. Based on clinical and/or pathologic criteria, 7 patients were diagnosed with osteomyelitis, 5 patients had osteomyelitis ruled out, and in 3 patients a definitive diagnosis could not be made.Field strength1.5 Tesla.SequencesUsed included STIR, T1-weighted and T2-weighted spin echo.AssessmentThe mean contrast changes upon ferumoxytol and gadolinium administration were measured from lesion regions of interest and compared with control regions.Statistical testsStudent's t-test, propagation of errors. Data are reported as means ± S.E.ResultsThe mean contrast changes, ΔC, associated with a diagnosis of osteomyelitis were found to be ΔCFe = −2.7 ± 0.7 when Ferumoxytol and T2w imaging sequences were used and ΔCGd = +3.1 ± 1.1 (P < 0.001) when Gadolinium and a T1w imaging sequence was used. The MRI contrast changes for both agents correlated with systemic markers of inflammation, such as the erythrocyte sedimentation rate. In patients without osteomyelitis, no significant contrast changes were observed in T2-weighted, Ferumoxytol-contrasted MRI. The macrophages in osteomyelitic lesions were found to take up at least 16 times as much iron as benign bone marrow.Data conclusionWe conclude that in terms of its MRI diagnostic accuracy for osteomyelitis Ferumoxytol-contrasted MRI is a promising approach for diagnosing osteomyelitis that merits further study.  相似文献   

11.
To evaluate whether the hepatic veins can be visualized with a rapid noninvasive technique, and if so, whether the obtained images could be helpful in the preparation of split liver grafts for transplantation, six cold stored human donor livers were investigated with magnetic resonance imaging (MRI). The hepatic vein branches and their confluence were clearly visualized. Anatomic variations of the middle hepatic vein with consequences for the choice of the transection plane could be demonstrated. Furthermore, unexpected vascular abnormalities were detected. From these preliminary results it is concluded that visualization of the hepatic veins can be helpful in determining the feasibility of the bipartition procedure and the choice of the transection plane. A potential wide application of this fast and noninvasive technique is possible.  相似文献   

12.
The extent and magnitude of microvascular leakage induced by myocardial contrast echocardiography (MCE) were characterized with contrast-aided magnetic resonance imaging (MRI). Evans blue dye, Definity ultrasound contrast agent and Omniscan magnetic resonance contrast agent were injected intravenously in anesthetized rats suspended in a water bath. Diagnostic ultrasound B mode scans with 1:4 end-systolic triggering were performed at 1.5 MHz using a cardiac phased array scanhead to provide a short axis view of the left ventricle. The in situ peak rarefactional pressure amplitude (PRPA) was 2.0 MPa. Microvascular leakage was characterized by extraction of the dye from tissue samples and by imaging the distribution and concentration of Omniscan within the myocardium. The extracted Evans blue was 2.3 times greater than in shams (P<.05) for heart samples perfused with heparin saline, and 1.6 times greater than shams (not significant) for unperfused samples. The MRI showed the penetration of the ultrasound-induced capillary leakage throughout much of the scan plane. The overall gadolinium content measured by MR showed the same trends as the extracted Evans blue, but was more variable. For pooled data (perfused and unperfused), the exposed samples were significantly increased (P<.05) relative to the sham samples for both Evans blue and gadolinium content. Omniscan leakage was also discernable in two of four MRIs from intact rats (after sacrifice). These results demonstrate a potential for MR mapping of capillary leakage induced by contrast-aided ultrasound, with a possible application to spatial characterization of local drug delivery.  相似文献   

13.
A method for intracellular iron labeling of human mononuclear cells (lymphocytes and monocytes) for magnetic resonance imaging (MRI) using simple incubation of cells with approved MRI iron contrast agents is presented. Labeled cells can be detected by MRI in vitro, and this suggests the possibility that the technique could become a marker for in vivo lymphocyte and monocyte trafficking studies in acute inflammatory lesions such as those in Multiple Sclerosis.  相似文献   

14.

Background and Aims

Diagnosis of liver disease has improved because of progress in imaging technology. Among the imaging methods, magnetic resonance imaging (MRI) has the advantage of a lack of radiation exposure, but the basis of the method (imaging of hydrogen atoms in water molecules) makes it hard to detect changes in tissue or the location of the diseased tissue in the liver. The aims of this study are to develop new contrast media for visualization of functional changes in the liver and to check the effectiveness of the media.

Methods

We developed a new molecular imaging contrast media that targets the asialoglycoprotein receptor (ASGP-R), a membrane protein that is specific to hepatocytes. We first checked the contrast media diameter and the cytotoxicity. Next, we examined the interaction of the media with ASGP-R through observation of fluorescein isothiocyanate (FITC)-labeled molecular imaging contrast media bound to normal hepatocellular ASGP-R using confocal laser scanning microscopy. Finally, we used MRI to observe hepatocyte interactions with the molecular imaging contrast media.

Results

The contrast media forms a nanoparticle of about 30 nm diameter in aqueous solution and the cytotoxicity is low. In vitro, the media has high specificity for ASGP-R in normal rat hepatocyte RLN-8 cells and this interaction was blocked by lactose (which has a similar molecular structure to that of galactose) and by an anti-ASGP-R antibody. The contrast media markedly enhanced T1-weighted images in MRI of normal rat hepatocytes compared to the signal strength for rat liver cancer cells.

Conclusions

We have shown that our new contrast media for molecular imaging of hepatocytes by MRI is effective in vitro.  相似文献   

15.
本文设计、合成并测试了一种新型的基于有机钆纳米颗粒的磁共振成像(MRI)造影剂.以1, 2-氨基硫醇与氰基的缩合反应为基础,成功合成了粒径在8~23 nm范围内的有机钆纳米颗粒.该有机钆纳米颗粒作为磁共振造影剂时,随着时间的推移,其纵向弛豫率逐渐减弱,横向弛豫率先增强后逐渐减弱,这与钆纳米颗粒粒径增大有关.有机钆纳米颗粒同时存在随时间变化的纵向弛豫和横向弛豫,表明它有望成为一种先进的T1-T2双模态MRI造影剂.  相似文献   

16.
一种新型的以天门冬氨酸-苯丙氨酸共聚物为载体的大分子生物相容性材料(AP-EDA-DOTA-Gd)被制备出来作为磁共振成像造影剂.首先合成了天门冬氨酸-苯丙
氨酸共聚物,之后利用乙二胺将1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸(DOTA)连接到共聚物上,最后将钆离子通过配位的作用方式连接到DOTA 上,最终得到大分子AP-EDA-DOTA-Gd.体外溶血性试验表明AP-EDA-DOTA-Gd 具有较好的血液相容性.在pH = 5.5 的组织蛋白酶B 的磷酸缓冲液中,AP-EDA-DOTA-Gd 能够降解.APEDA-DOTA-Gd 的体外弛豫效率(15.95 mmol–1?L?s–1)为目前临床应用的Gd-DOTA (5.59mmol–1?L?s–1)的2.9 倍.大鼠肝脏成像实验结果表明,AP-EDA-DOTA-Gd 对于肝组织的成像增强对比度为63.5±6.1%远高于Gd-DOTA (24.2±2.9%).  相似文献   

17.
PurposeTo compare the imaging characteristics of the volumetric-interpolated breath-hold examination (VIBE) using compressed-sensing (CS) acceleration (CS-VIBE) with the conventional sequence relying on parallel imaging to assess the potential use of CS-VIBE as a functional imaging technique for upper abdominal haemodynamics.Materials and methodsPatients (30 men, 27 women) suspected of having a hepatic disease underwent magnetic resonance imaging (MRI) of the liver, including a dynamic contrast-enhanced study. Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid was used as the contrast agent. MRI data of two multi-phase breath-hold exams were used for intra-individual comparisons. The VIBE and CS-VIBE were performed on different days. Image quality in both sequences was qualitatively assessed by three experienced radiologists. Moreover, the contrast ratio (CR) of the aorta, portal vein, liver and pancreas to muscle tissue were measured as a quantitative assessment. For the CS-VIBE, a five-phase time–intensity curve (TIC) was created to evaluate haemodynamics. The measurement area included the pancreas, common hepatic artery, portal vein and superior mesenteric vein. The ratio of that area to the muscle tissue in the same cross section was used to create the TICs.ResultsThe qualitative assessment showed that artefacts were significantly different between the VIBE and CS-VIBE sequences. This finding indicated that the conventional VIBE had fewer artefacts. The CR was significantly higher for the CS-VIBE than for the VIBE images in all phases (p < 0.001). An evaluation of haemodynamics compared with those obtained by CT angiography showed almost the same temporal characteristics in the common hepatic artery, portal vein and superior mesenteric vein signals as those in a previous study.ConclusionCompared with the conventional VIBE, the CS-VIBE had significantly higher temporal resolution and higher image contrast. The temporal resolution of the CS-VIBE was sufficient for viewing abdominal haemodynamics. If the remaining limitation of acquisition speed for dynamic MRI can be adequately addressed, we believe that CS-VIBE functional images with high-contrast haemodynamics will be very useful in clinical practise.  相似文献   

18.
While BOLD contrast reflects hemodynamic changes within capillaries serving neural tissue, it also has a venous component. Studies that have determined the relation of large blood vessels to the activation map indicate that veins are the source of the largest response, and the most delayed in time. It would be informative if the location of these large veins could be extracted from the properties of the functional responses, since vessels are not visible in BOLD contrast images. The present study describes a method for investigating whether measures taken from the functional response can reliably predict vein location, or at least be useful in down-weighting the venous contribution to the activation response, and illustrates this method using data from one subject. We combined fMRI at 3 Tesla with high-resolution anatomic imaging and MR venography to test whether the intrinsic properties of activation time courses corresponded to tissue type. Measures were taken from a gamma fit to the functional response. Mean magnitude showed a significant effect of tissue type (p < 0.001) where CSF > veins ≈ gray matter > white matter. Mean delays displayed the same ranking across tissue types (p < 0.001), except that veins > gray matter. However, measures for all tissue types were distributed across an overlapping range. A logistic regression model correctly discriminated 72% of the veins from gray matter in the absence of independent information of macroscopic vessels (ROC = 0.72). While tissue classification was not perfect for this subject, weighting the T contrast by the predicted probabilities materially reduced the venous component to the activation map.  相似文献   

19.
The purpose of this study was to evaluate the magnetic resonance (MR) cerebral venography findings of a three-dimensional phase contrast MR sequence with zero filling interpolation of the data in the slice encoding direction. Fifty volunteers were enrolled in the study. Images were obtained on a 1.5 MR imaging system with acquisition time of 12 min. MIP images were reconstructed throughout the entire imaging volume. A grading scale system was used to assess dural venous sinuses, major deep veins, cortical, and cortical eponymic veins. Inferior group of dural venous sinuses, inferior sagittal sinus, and cortical eponymic veins were poorly demonstrated. Score of the superior sagittal sinus, the straight sinus, the confluence of the superior sinus group, the right transverse and sigmoid sinuses, the internal veins, and the vein of Galen was excellent. The score of the left transverse and sigmoid sinuses was good. In conclusion, when using zero filling interpolation of the data in a three-dimensional phase contrast MR cerebral venography sequence, the superior group of dural venous sinuses and main major deep veins are demonstrated with good conspicuity.  相似文献   

20.
In pursuit of the biological detection applications, recent years have witnessed the prosperity of novel multi-modal nanoprobes. In this study, biocompatible bovine serum albumin (BSA)-coated gold nanoparticles (Au NPs) containing Gd (III) as the contrast agent for both X-ray CT and T1-weighted MR imaging is reported. Firstly, the Au NPs with BSA coating (Au@BSA) was prepared through a moderate one-pot reduction route in the presence of hydrazine hydrate as reducer. Sequentially, the BSA coating enables modification of diethylenetriaminepentaacetic acid (DTPA) as well as targeting reagent hyaluronic acid (HA), and further chelation of Gd (III) ions led to the formation of biomimetic nanoagent HA-targeted Gd-Au NPs (HA-targeted Au@BSA-Gd-DTPA). Several techniques were used to thoroughly characterize the formed HA-targeted Gd-Au NPs. As expected, the as-prepared nanoagent with mean diameter of 13.82 nm exhibits not only good colloid stablility and water dispersibility, but also satisfying low cytotoxicity and hemocompatibility in the tested concentration range. Additionally, for the CT phantoms, the obtained nanocomplex shows an improved contrast in CT scanning than that of Au@BSA as well as small molecule iodine-based CT contrast agents such as iopromide. Meanwhile, for the T1-weighted MRI images, there is a linear increase of contrast with concentration of Gd for the two cases of HA-targeted Gd-Au NPs and Magnevist. Strikingly, the nanoagent we explored displays a relatively higher r1 relaxivity than that of commercial MR contrast agents. Therefore, this newly constructed nanoagent could be used as contrast agents for synergistically enhanced X-ray CT and MR phantoms, holding promising potential for future biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号