首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
X‐ray optics, based on a double‐crystal deflection scheme, that enable reflectivity measurements from liquid surfaces/interfaces have been designed, built and commissioned on beamline I07 at Diamond Light Source. This system is able to deflect the beam onto a fixed sample position located at the centre of a five‐circle diffractometer. Thus the incident angle can be easily varied without moving the sample, and the reflected beam is tracked either by a moving Pilatus 100K detector mounted on the diffractometer arm or by a stationary Pilatus 2M detector positioned appropriately for small‐angle scattering. Thus the system can easily combine measurements of the reflectivity from liquid interfaces (Qz > 1 Å?1) with off‐specular data collection, both in the form of grazing‐incidence small‐angle X‐ray scattering (GISAXS) or wider‐angle grazing‐incidence X‐ray diffraction (GIXD). The device allows operation over the energy range 10–28 keV.  相似文献   

2.
3.
At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small‐angle X‐ray scattering (SAXS) beamline has been installed with an in‐achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X‐ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (ΔE/E? 2 × 10?4) in the energy range 5–23 keV, or by a double Mo/B4C multilayer monochromator for 10–30 times higher flux (~1011 photons s?1) in the 6–15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of ~0.9 mm × 0.3 mm (horizontal × vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing‐incidence SAXS (GISAXS) from liquid surfaces. Two online beam‐position monitors separated by 8 m provide an efficient feedback control for an overall beam‐position stability in the 10 µm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray‐tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core‐shell quantum dots) and GISAXS from liquid surfaces.  相似文献   

4.
5.
An X‐ray Raman spectrometer for studies of local structures in minerals is discussed. Contrary to widely adopted back‐scattering spectrometers using ≤10 keV X‐rays, a spectrometer utilizing ~20 keV X‐rays and a bent Laue analyzer is proposed. The 20 keV photons penetrate mineral samples much more deeply than 10 keV photons, so that high intensity is obtained owing to an enhancement of the scattering volume. Furthermore, a bent Laue analyzer provides a wide band‐pass and a high reflectivity, leading to a much enhanced integrated intensity. A prototype spectrometer has been constructed and performance tests carried out. The oxygen K‐edge in SiO2 glass and crystal (α‐quartz) has been measured with energy resolutions of 4 eV (EXAFS mode) and 1.3 eV (XANES mode). Unlike methods previously adopted, it is proposed to determine the pre‐edge curve based on a theoretical Compton profile and a Monte Carlo multiple‐scattering simulation before extracting EXAFS features. It is shown that the obtained EXAFS features are reproduced fairly well by a cluster model with a minimal set of fitting parameters. The spectrometer and the data processing proposed here are readily applicable to high‐pressure studies.  相似文献   

6.
The combined effect of relativistic and ponderomotive nonlinearities on the self‐focusing of an intense cosh‐Gaussian laser beam (CGLB) in magnetized plasma have been investigated. Higher‐order paraxial‐ray approximation has been used to set up the self‐focusing equations, where higher‐order terms in the expansion of the dielectric function and the eikonal are taken into account. The effects of various lasers and plasma parameters viz. laser intensity (a0), decentred parameter (b), and magnetic field (ωc) on the self‐focusing of CGLB have been explored. The results are compared with the Gaussian profile of laser beams and relativistic nonlinearity. Self‐focusing can be enhanced by optimizing and selecting the appropriate laser‐plasma parameters. It is observed that the focusing of CGLB is fast in a nonparaxial region in comparison with that of a Gaussian laser beam and in a paraxial region in magnetized plasma. In addition, strong self‐focusing of CGLB is observed at higher values of a0, b, and ωc. Numerical results show that CGLB can produce ultrahigh laser irradiance over distances much greater than the Rayleigh length, which can be used for various applications.  相似文献   

7.
J. Schuyer 《Molecular physics》2013,111(6):597-599
The quantum yields of naphthalene vapour fluorescence at 225°c and of phenanthrene vapour fluorescence at 365°c excited by the Hg 313 μ line are independent of concentration up to 0·014 and 0·007 moles/l. respectively; this is attributed to fast dissociation relaxation of the excimer at these temperatures.

The fluorescence of naphthacene vapour excited at temperatures of 355–435°c by the group of Hg lines at 365 μ decreases with increasing pressure at pressures below that at which absorption of the incident radiation is virtually complete, and is attributed to a combination of self-quenching and reabsorption of fluorescence. An analysis of the data for the limiting cases of complete and negligible fluorescence reabsorption provides upper and lower limits for self-quenching constant which are consistent with unit collisional quenching efficiency and a lifetime of 5·3 ± 2·2 + 10-9 sec at 355°c.  相似文献   

8.
A cell for the investigation of interfaces under pressure is presented. Given the pressure and temperature specifications of the cell, P≤ 100 bar and 253 K ≤T≤ 323 K, respectively, high‐energy X‐rays are required to penetrate the thick Al2O3 windows. The CH4(gas)/H2O(liquid) interface has been chosen to test the performance of the new device. The measured dynamic range of the high‐energy X‐ray reflectivity data exceeds 10?8, thereby demonstrating the validity of the entire experimental set‐up.  相似文献   

9.
Thin films of Sb, Se and Sb2Se3 are deposited onto glass and irradiated by a cw-Ar+ laser beam. The kinetics of crystallization and oxidation are traced via the time dependence of optical reflectivity and temperature, T, of the irradiated zone. For Sb2Se3, transformations start abruptly when T attains a critical value, T c, independently of the laser beam power. These T c values are comparable to the ones observed under furnace annealing conditions.  相似文献   

10.
A high‐pressure cell for in situ X‐ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set‐up of this hydrostatic high‐pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure‐induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X‐ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.  相似文献   

11.
The characterization of Mg–Co–Zr tri‐layer stacks using X‐ray fluorescence induced by X‐ray standing waves, in both the grazing‐incidence (GI) and the grazing‐exit (GE) modes, is presented. The introduction of a slit in the direction of the detector improves the angular resolution by a factor of two and significantly improves the sensitivity of the technique for the chemical characterization of the buried interfaces. By observing the intensity variations of the Mg Kα and Co Lα characteristic emissions as a function of the incident (GI mode) or detection (GE mode) angle, it is shown that the interfaces of the Si/[Mg/Co/Zr]×30 multilayer are abrupt, whereas in the Si/[Mg/Zr/Co]×30 multilayer a strong intermixing occurs at the Co‐on‐Zr interfaces. An explanation of this opposite behavior of the Co‐on‐Zr and Zr‐on‐Co interfaces is given by the calculation of the mixing enthalpies of the Co–Mg, Co–Zr and Mg–Zr systems, which shows that the Co–Zr system presents a negative value and the other two systems present positive values. Together with the difference of the surface free energies of Zr and Co, this leads to the Mg/Zr/Co system being considered as a Mg/CoxZry bi‐layer stack, with x/y estimated around 3.5.  相似文献   

12.
The study of liquid–liquid interfaces with X‐ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double‐crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing‐incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å?1 in the surface normal and out to 14.8 Å?1 in the in‐plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X‐ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.  相似文献   

13.
The Raman and infrared spectra (4000 to 50 cm–1) of the gas, liquid or solution, and solid have been recorded of n‐propylamine, CH3CH2CH2NH2. Variable temperature (−60 to −100 °C) studies of the Raman (1175 to 625 cm–1) and far infrared (600 to 10 cm–1) spectra dissolved in liquid xenon were carried out. From these data, the five possible conformers were identified and their relative stabilities obtained with enthalpy difference relative to trans–trans (Tt) for trans–gauche (Tg) of 79 ± 9 cm–1 (0.9 ± 0.1 kJ/mol); for Gg of 91 ± 26 cm–1 (1.08 ± 0.3 kJ/mol); for Gg′ of 135 ± 21 cm–1 (1.61 ± 0.2 kJ/mol); for Gt of 143 ± 11 cm–1 (1.71 ± 0.1 kJ/mol). The percentage of the five conformers is estimated to be 18% for the Tt, 24 ± 1% for Tg, 23 ± 3% for Gg, 18 ± 1% for Gg′ and 18 ± 1% for Gt at ambient temperature. The conformational stabilities have been predicted from ab initio calculations utilizing several different basis sets up to aug‐cc‐pVTZ from both second‐order Møller–Plesset (MP2, full) and density functional theory calculations by the Becke, three‐parameter, Lee–Yang–Parr method. Vibrational assignments were provided for the observed bands for all five conformers, which are supported by MP2(full)/6‐31G(d) ab initio calculations to predict harmonic force constants, wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. Estimated r0 structural parameters were obtained from adjusted MP2(full)/6‐311+G(d,p) calculations. The results are discussed and compared with the corresponding properties of some related molecules. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

15.
Complex formation of menadione with α‐, hydroxypropyl α‐, β‐, hydroxypropyl‐β‐, methyl‐β‐ and hydroxypropyl‐γ cyclodextrins in aqueous solution at 298.15 K was studied by using isothermal titration calorimetry, 1H NMR, and UV–vis spectrophotometry. The experimental data indicated the partial insertion of menadione into macrocyclic cavity upon formation of two alternative types of 1:1 inclusion complexes, whose thermodynamic parameters (K, ΔcG0, ΔcH0, and ΔcS0) were calculated. The influence of host size on the complex formation process was analyzed. β‐Cyclodextrin and its hydroxypropylated and methylated derivatives were found more effective binders towards menadione than α‐ and γ‐cyclodextrins. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
《X射线光谱测定》2005,34(3):253-257
L x‐ray fluorescence cross‐sections for elements with 45 ≤ Z ≤ 50 were measured at 7 keV using synchrotron radiation photoionization. The experimental set‐up provided a linearly polarized monoenergetic photon beam producing a low background and improving the signal‐to‐noise ratio. The data obtained for the L lines, Ll, Lα, LβI, LβII, LγI and LγII, were grouped considering the transition scheme, the energies of the emission lines and the detector resolution. Results for the experimental cross‐sections obtained were compared with theoretical values using two different data tables. In general, it was found that the experimental fluorescence cross‐sections are slightly higher (7–10%) than the theoretically calculated data and in some cases these differences are up to 40%. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The light output,S v by α-particles stopped in anthracene vapour has been measured as a function of vapour pressure (10–700 mm Hg) and temperature (250°C–385°C). The comparison of the results for an idealised vapour neglecting collisions with the light output,S c, from anthracene crystals by α-particles impinging parallel to thec′-axis yields the unexpected results: Sv(8.78 MeV)/Sc(8.78 MeV)=0.46±0.05 andS v(6.05 MeV)/S c(6.05 MeV)=0.57±0.08. A simple model assuming quenching by collisions of the vapour molecules could explain the observed dependence of the light output on the vapour pressure at fixed temperature. The path lengthsR v of α-particles in anthracene vapour were determined to be Rv(8.78 MeV)=(9.0±0.6) mg/cm2,R v(6.05 MeV)=(4.9±0.6) mg/cm2 and the ratio of the light output by the two different α-energiesS v(8.78 MeV)/S v(6.05 MeV)=1.42±0.2.  相似文献   

18.
Sub‐micrometer spherical particles that are obtained by pulsed laser melting in liquid (PLML) are usually observed to be single crystalline, and it is suggested that they are mechanically very strong. In this study, fracture tests of various sub‐micrometer spherical particles are performed by compressive force application. The results indicate that B4C and TiO2 sub‐micrometer spherical particles exhibit brittle fracture behavior under tensile fracture mode at the center of the particles. The fracture strength of the sub‐micrometer spherical particles is larger than that of the bulk material reported in the literature by about one order of magnitude. TiO2 sub‐micrometer spherical particles obtained by PLML are stronger than the commercially available TiOx sub‐micrometer spherical particles with a porous structure. In addition, due to the single crystallinity of particles, smaller particles have larger fracture strength, becoming up to 10–40% of ideal tensile fracture strength calculated based on density functional theory. Thus, these results demonstrate that sub‐micrometer spherical particles obtained using PLML exhibit fairly strong and unique mechanical properties, and therefore they are very promising for various mechanical applications at the sub‐micrometer size scale.  相似文献   

19.
This paper reports about high reactivity of α‐silylamines in the reaction with CCl4. Unlike Et3N, α‐silylamines rapidly react with CCl4 upon irradiation with daylight to form α‐silylamine hydrochloride salts in 92–98% yields. The influence of structure of α‐silylamines and solvent on the degree of conversion was displayed. The interaction of α‐silylamines with CCl4 was studied by NMR, ESR, and IR spectroscopy. C‐centered radicals of α‐silylamines were detected by ESR spectroscopy with spin traps (MNP, ND, and PBN) in reaction mixtures in CH3CN and C6H6 and it show the radical character of this reaction. Both CH3CN and C6H6 serve as solvents as well as reagents for this reaction. A mechanism of an interaction between α‐silylamines and CCl4 is discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Combretastatin‐A2 (CA2), a potential anticancer drug in advanced preclinical development, is extracted from the medicinal plant C ombretum caffrum. The NIR‐FT Raman and FT‐IR spectral studies of the molecule were carried out and a b initio calculations performed at the B3LYP/6‐31G(d) level to derive the equilibrium geometry as well as the vibrational wavenumbers and intensities of the spectral bands. The vibrational analysis showed that the molecule has a similar geometry as that of c is‐stilbene, and has undergone steric repulsion resulting in twisting of the phenyl ring with respect to the ethylenic plane. Vibrational analysis was used to investigate the lowering of the stretching modes, and enhancement of infrared band intensities of the C–H stretching modes of Me2 may be attributed to the electronic effects caused by back‐donation and induction from the oxygen atom. Analysis of phenyl ring modes shows that the CA2 stretching mode 8 and the aromatic C–H in‐plane bending mode are equally active as strong bands in both IR and Raman spectra, which can be interpreted as the evidence of intramolecular charge transfer (ICT) between the OH and OCH3groups via conjugated ring path and is responsible for bioactivity of the molecule. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号