首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new definition of the effective aperture of the X‐ray compound refractive lens (CRL) is proposed. Both linear (one‐dimensional) and circular (two‐dimensional) CRLs are considered. It is shown that for a strongly absorbing CRL the real aperture does not influence the focusing properties and the effective aperture is determined by absorption. However, there are three ways to determine the effective aperture in terms of transparent CRLs. In the papers by Kohn [(2002). JETP Lett. 76 , 600–603; (2003). J. Exp. Theor. Phys. 97 , 204–215; (2009). J. Surface Investig. 3 , 358–364; (2012). J. Synchrotron Rad. 19 , 84–92; Kohn et al. (2003). Opt. Commun. 216 , 247–260; (2003). J. Phys. IV Fr, 104 , 217–220], the FWHM of the X‐ray beam intensity just behind the CRL was used. In the papers by Lengeler et al. [(1999). J. Synchrotron Rad. 6 , 1153–1167; (1998). J. Appl. Phys. 84 , 5855–5861], the maximum intensity value at the focus was used. Numerically, these two definitions differ by 50%. The new definition is based on the integral intensity of the beam behind the CRL over the real aperture. The integral intensity is the most physical value and is independent of distance. The new definition gives a value that is greater than that of the Kohn definition by 6% and less than that of the Lengeler definition by 41%. A new approximation for the aperture function of a two‐dimensional CRL is proposed which allows one to calculate the two‐dimensional CRL through the one‐dimensional CRL and to obtain an analytical solution for a complex system of many CRLs.  相似文献   

2.
3.
Owing to its extreme sensitivity, quantitative mapping of elemental distributions via X‐ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X‐ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super‐resolved ultra‐structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step‐ and fly‐scanning modes, robust, simultaneous XFM‐SXDM is demonstrated.  相似文献   

4.
Focusing planar refractive mosaic lenses based on triangular prism microstructures have been used as an alternative approach for wide‐bandpass monochromatization of high‐energy X‐rays. The strong energy dependence of the refractive index of the lens material leads to an analogous energy dependence of the focal length of the lens. The refractive mosaic lens, in comparison with the refractive lens of continuous parabolic profile, is characterized by a higher aperture because of reduced passive material. In combination with a well defined pinhole aperture in the focal plane, the transmittance of photons of an appropriate energy can be relatively high and photons of deviating energy can be efficiently suppressed. The photon energy can be tuned by translating the pinhole along the optical axis, and the bandwidth changed by selecting appropriate pinhole aperture and beam stop. This method of monochromatization was realised at the ANKA FLUO beamline using a mosaic lens together with a 20 µm pinhole and beam stop. An energy resolution of 2.0% at 16 keV has been achieved.  相似文献   

5.
X‐ray free‐electron lasers (XFELs) generate sequences of ultra‐short spatially coherent pulses of X‐ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E? 2 × 10?6, is proposed. This is much better than for most modern X‐ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single‐crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV.  相似文献   

6.
An X‐ray dynamical diffraction Fraunhofer holographic scheme is proposed. Theoretically it is shown that the reconstruction of the object image by visible light is possible. The spatial and temporal coherence requirements of the incident X‐ray beam are considered. As an example, the hologram recording as well as the reconstruction by visible light of an absolutely absorbing wire are discussed.  相似文献   

7.
Novel X‐ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full‐field hard X‐ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub‐nanometer height sensitivity. Sub‐second X‐ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample. The optical configuration and various engineering considerations that are necessary to achieve optimal imaging resolution and contrast in this type of microscopy are discussed.  相似文献   

8.
The MISTRAL beamline is one of the seven phase‐I beamlines at the ALBA synchrotron light source (Barcelona, Spain) that will be opened to users at the end of 2010. MISTRAL will be devoted to cryotomography in the water window and multi‐keV spectral regions for biological applications. The optics design consists of a plane‐grating monochromator that has been implemented using variable‐line‐spacing gratings to fulfil the requirements of X‐ray microscopy using a reflective condenser. For instance, a fixed‐focus condition independent of the included angle, constant magnification as well as coma and spherical aberration corrections are achieved with this system. The reported design is of wider use.  相似文献   

9.
Using the scanning transmission X‐ray microscope at BESSY II, colloidal structures from a Chernozem soil have been studied with a spatial resolution around 60 nm and a spectral resolution of 1700 at the K‐absorption edge of carbon. Elemental mapping has been used to determine the distribution of organic matter within the colloidal structures. Spectra have been extracted from image stacks to obtain information about the chemical state. For the analysis of the latter, principal component analysis and cluster analysis have been applied. It was possible, for example, to discriminate clay particles against organic components.  相似文献   

10.
The X‐ray lens, which is composed of opposing canted saw‐tooth structures, originally assembled from cut‐out pieces from long‐playing records, is understood by recognizing that an incident plane X‐ray wave will traverse a varying number of triangular prisms in them. The refraction will deflect any beam towards the prism tips and the variation of the deflection angle, which grows linearly with the number of traversed prisms, can result in X‐ray focusing. The structure offers focusing flexibility by simply changing the taper angle. This report will discuss the aberrations arising in the saw‐tooth structure in its simplest form with identical prisms. It is found that the saw‐tooth structures in low‐Z materials with focal length below 1 m provide less flux density in the focal spot than stacks of one‐dimensionally focusing refractive lenses with identical transmission function. This is due to excessive aberrations in the regular structure, which are absent in stacks of concave lenses, and which limit the focusing to spot sizes of just submicrometre dimensions, as measured experimentally for some lenses. It will be shown that this limitation can be overcome by appropriately modifying the prism shape. Then the image size could be reduced by about an order of magnitude to the diffraction limit with competitive numbers even below 0.1 µm. Microfabrication techniques are identified as the appropriate means for producing the structures.  相似文献   

11.
The properties of X‐ray vacuum‐gap waveguides (WGs) with additional periodic structure on one of the reflecting walls are studied. Theoretical considerations, numerical simulations and experimental results confirm that the periodic structure imposes additional conditions on efficient propagation of the electromagnetic field along the WGs. The transmission is maximum for guided modes that possess sufficient phase synchronism with the periodic structure (here called `super‐resonances'). The field inside the WGs is essentially given at low incidence angle by the fundamental mode strongly coupled with the corresponding phased‐matched mode. Both the simulated and the experimental diffraction patterns show in the far field that propagation takes place essentially only for low incidence angles, confirming the mode filtering properties of the structured X‐ray waveguides.  相似文献   

12.
A confocal full‐field X‐ray microscope has been developed for use as a novel three‐dimensional X‐ray imaging method. The system consists of an X‐ray illuminating `sheet‐beam' whose beam shape is micrified only in one dimension, and an X‐ray full‐field microscope whose optical axis is normal to the illuminating sheet beam. An arbitral cross‐sectional region of the object is irradiated by the sheet‐beam, and secondary X‐ray emission such as fluorescent X‐rays from this region is imaged simultaneously using the full‐field microscope. This system enables a virtual sliced image of a specimen to be obtained as a two‐dimensional magnified image, and three‐dimensional observation is available only by a linear translation of the object along the optical axis of the full‐field microscope. A feasibility test has been carried out at beamline 37XU of SPring‐8. Observation of the three‐dimensional distribution of metallic inclusions in an artificial diamond was performed.  相似文献   

13.
Investigations of intact dental enamel as well as carious‐affected human dental enamel were performed using infrared spectromicroscopy and X‐ray diffraction applying synchrotron radiation. Caries of enamel was shown to be characterized by an increase in the number of deformation and valence vibrations for N—C—O, N—H and C=O bonds, a decrease of the crystallinity index, and by the absence of the preferable orientation of hydroxyapatite crystals within the affected enamel. This indicates the presence of destructive processes in the organic matrix of hard tooth tissues.  相似文献   

14.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

15.
The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano‐ and micrometer‐scale factors at the origin of macroscopic behavior. While different electron‐ and X‐ray‐based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X‐ray imaging set‐up is proposed, combining full‐field transmission X‐ray microscopy (TXM) with X‐ray absorption near‐edge structure (XANES) spectroscopy to follow two‐dimensional and three‐dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (>20 µm) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields.  相似文献   

16.
A compact transmission X‐ray microscope has been designed and implemented based on a cylindrical symmetry around the optical axis that sharply limits the instabilities due to thermal mechanical drift. Identical compact multi‐axis closed‐loop actuation modules drive different optical components. The design is modular and simplifies the change of individual parts, e.g. the use of different magnification and focusing devices. This compact instrument can be easily transported between laboratory and synchrotron facilities and quickly put into operation. An automated alignment mechanism simplifies the assembly of different modules after transportation. After describing the design details, the results of the first tests are presented.  相似文献   

17.
A new method of harmonics rejection based on X‐ray refractive optics has been proposed. Taking into account the fact that the focal distance of the refractive lens is energy‐dependent, the use of an off‐axis illumination of the lens immediately leads to spatial separation of the energy spectrum by focusing the fundamental harmonic at the focal point and suppressing the unfocused high‐energy radiation with a screen absorber or slit. The experiment was performed at the ESRF ID06 beamline in the in‐line geometry using an X‐ray transfocator with compound refractive lenses. Using this technique the presence of the third harmonic has been reduced to 10?3. In total, our method enabled suppression of all higher‐order harmonics to five orders of magnitude using monochromator detuning. The method is well suited to third‐generation synchrotron radiation sources and is very promising for the future ultimate storage rings.  相似文献   

18.
In recent years, increasing attention has been devoted to X‐ray phase contrast imaging, since it can provide high‐contrast images by using phase variations. Among the different existing techniques, Zernike phase contrast microscopy is one of the most popular phase‐sensitive techniques for investigating the fine structure of the sample at high spatial resolution. In X‐ray Zernike phase contrast microscopy, the image contrast is indeed a mixture of absorption and phase contrast. Therefore, this technique just provides qualitative information on the object, which makes the interpretation of the image difficult. In this contribution, an approach is proposed for quantitative phase retrieval in X‐ray Zernike phase contrast microscopy. By shifting the phase of the direct light by π/2 and 3π/2, two images of the same object are measured successively. The phase information of the object can then be quantitatively retrieved by a proper combination of the measured images. Numerical experiments were carried out and the results confirmed the feasibility of the proposed method. It is expected that the proposed method will find widespread applications in biology, materials science and so on.  相似文献   

19.
Synchrotron‐based scanning transmission soft X‐ray microscopy (STXM) with nanometer resolution was used to investigate the existence and behavior of interfacial gas nanobubbles confined between two silicon nitride windows. The observed nanobubbles of SF6 and Ne with diameters smaller than 2.5 µm were quite stable. However, larger bubbles became unstable and grew during the soft X‐ray imaging, indicating that stable nanobubbles may have a length scale, which is consistent with a previous report using atomic force microscopy [Zhang et al. (2010), Soft Matter, 6 , 4515–4519]. Here, it is shown that STXM is a promising technique for studying the aggregation of gases near the solid/water interfaces at the nanometer scale.  相似文献   

20.
For the first time, the three‐dimensional (3D) ultrastructure of an intact rice pollen cell has been obtained using a full‐field transmission hard X‐ray microscope operated in Zernike phase contrast mode. After reconstruction and segmentation from a series of projection images, complete 3D structural information of a 35 µm rice pollen grain is presented at a resolution of ~100 nm. The reconstruction allows a clear differentiation of various subcellular structures within the rice pollen grain, including aperture, lipid body, mitochondrion, nucleus and vacuole. Furthermore, quantitative information was obtained about the distribution of cytoplasmic organelles and the volume percentage of each kind of organelle. These results demonstrate that transmission X‐ray microscopy can be quite powerful for non‐destructive investigation of 3D structures of whole eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号