首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The SUT‐NANOTEC‐SLRI beamline was constructed in 2012 as the flagship of the SUT‐NANOTEC‐SLRI Joint Research Facility for Synchrotron Utilization, co‐established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate‐energy X‐ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X‐ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s?1 (100 mA)?1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K‐edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.  相似文献   

2.
Radiolysis‐induced effects on aqueous tungsten ions are observed to form a precipitate within seconds upon exposure to a synchrotron X‐ray micro‐beam in a WO3 + H2O system at 873 K and 200 MPa. In situ Fe K‐edge energy‐dispersive X‐ray absorption spectroscopy (ED‐XAS) measurements were made on Fe(II)Cl2 aqueous solutions to 773 K in order to study the kinetics of high‐temperature reactions of Fe2+ and Fe3+ ions with transient radiolysis species. The radiolytic reactions in a fluid sample within a hydrothermal diamond anvil cell result in oxidation of the Fe2+ ion at 573 K and reduction of Fe3+ at temperatures between 673 and 773 K and of the Fe2+ ion at 773 K. The edge‐energy drift evident in the ED‐XAS data directly reflects the kinetics of reactions resulting in oxidation and/or reduction of the Fe2+ and Fe3+ ions in the aqueous solutions at high temperatures. The oxidation and reduction trends are found to be highly consistent, making reliable determinations of reaction kinetics possible.  相似文献   

3.
Synchrotron‐radiation‐induced total reflection x‐ray fluorescence (SR‐TXRF) analysis was used for x‐ray absorption near edge structure (XANES) measurements for the speciation of arsenic in cucumber (Cucumis sativus L.) xylem sap. The objective of the presented work was to exploit the advantages of the TXRF geometry for XANES analysis. Measurements were accomplished at the bending magnet beamline L of HASYLAB, Hamburg, Germany, using a Si(111) double crystal monochromator and a silicon drift detector (SDD). Experiments were performed by growing cucumber plants in hydroponics containing arsenite [As(III)] or arsenate [As(V)] in order to identify the arsenic species of the collected xylem saps by K‐edge SR‐TXRF XANES. Cucumber xylem saps, as well as nutrient solutions containing arsenic in the two above‐mentioned species, were analyzed and compared with arsenate and arsenite standard solutions. Arsenic speciation in xylem sap down to 30 ng/ml (30 ppb) was achieved, and no alteration of the oxidation state was observed during the measurements. Analysis of xylem saps showed that As(V) taken up from the nutrient solution was reduced to As(III). As(III) contained in the nutrient solutions was found to be partially oxidized to As(V). These results confirmed the preliminary measurements obtained with flow injection analysis (FIA) and high‐performance liquid chromatography‐high resolution inductively coupled plasma mass spectrometry (HPLC‐HR‐ICP‐MS) and showed the competitive capability of SR‐TXRF XANES analysis for this application. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam‐position monitor (BPM) to a testing beamline and a single‐grating beamline that enables experiments to record X‐ray photo‐emission spectra (XPS) and X‐ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X‐ray photon energies in the range 300–1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano‐fabrication and topological thin films are increasing. The basic spherical‐grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end‐stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme‐ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L‐edge adsorption spectrum.  相似文献   

5.
The design and operation of a low‐volume spectroelectrochemical cell for X‐ray absorption spectroscopy (XAS) of solutions at room temperature is described. Fluorescence XAS measurements are obtained from samples contained in the void space of a 50 µL reticulated vitreous carbon (sponge) working electrode. Both rapid electrosynthesis and control of the effects of photoreduction are achieved by control over the flow properties of the solution through the working electrode, where a good balance between the rate of consumption of sample and the minimization of decomposition was obtained by pulsing the flow of the solution by 1–2 µL with duty cycle of ~3 s while maintaining a small net flow rate (26–100 µL h?1). The performance of the cell in terms of control of the redox state of the sample and minimization of the effects of photoreduction was demonstrated by XAS measurements of aqueous solutions of the photosensitive FeIII species, [Fe(C2O4)3]3?, together with that of the electrogenerated [Fe(C2O4)3]4? product. The current response from the cell during the collection of XAS spectra provides an independent measure of the stability of the sample of the measurement. The suitability of the approach for the study of small volumes of mM concentrations of protein samples was demonstrated by the measurement of the oxidized and electrochemically reduced forms of cytochrome c.  相似文献   

6.
Various C‐doped metal oxide nanoparticles (NPs) are prepared from metal nitrates in poly‐(methyl vinyl ether‐co‐maleic anhydride) (PVM/MA) nanoreactors. The loading of metal nitrates in the nanoreactors is realized via a process of solution‐enhanced dispersion by supercritical CO2. When the temperature exceeds the thermal decomposition temperature of the nitrates, the nitrates‐loaded nanoreactors transform into C‐doped metal oxide NPs. ZnO, NiO, and Co3O4 NPs as representative of the doped oxides are successfully fabricated. A precise control over the doping concentration and doping site in the lattice is achieved by changing the mass ratio between PVM/MA and metal nitrate. The controllable carbon doping avoids undesirable aggregation of carbon species and metal oxide NPs, endows the NPs with broad and strong absorption bands in the visible light region, and creates channels for separation of photo‐generated electrons and holes. In this regard, the resultant C‐doped metal oxide NPs exhibit excellent photocatalytic, photo‐induced antibacterial, and photothermal performances.  相似文献   

7.
Synthesis of bimetallic‐oxide‐encapsulated magnetic nanoparticles is still significantly challenging and has rarely been attempted previously, due to the effects of lattice mismatch, weak chemical interactions and variances in growth rates between different components, as well as the difficulty in process control for uniform co‐deposition. In the present work, Fe‐Mn bimetallic oxide (FMBO) nanoplatelet encapsulated magnetic nanoparticles (Mag‐FeMn) are prepared by controlled engineering of the interparticle coupling of Fe3O4 and FMBO, with its multifunctional capabilities highlighted in terms of the potentially superior As(III) sequestration and convenient recoverability. Multiple characterization techniques are employed to examine the derived morphologies and to accurately resolve both compositionally and magnetically the hierarchical structure in detail. The synthesized magnetic composites retain highly porous structure with the main components of Fe2O3, FeOOH, Fe3O4, and Mn3O4. Mag‐FeMn exhibits a quite competitive high capacity for As(III) capture (56.1 mg g–1), whereby As(III) oxidation coupled with synchronous sorption contributes to the improved performance. The unique heterostructure of FMBO encapsulation with an embedded magnetic core would be applicable to help with rational synthesis of other bimetallic oxide encapsulated magnetic nanoparticles, and definitely shows promise for the development of new nanotechnology enabled approaches for adsorption‐based water purification.  相似文献   

8.
The kinetics of photo‐darkening of amorphous As2S3 and a‐As2Se3 thin films follows a single exponential, but the magnitude and the rate of the process is higher in case of As2S3. The kinetics of self‐bleaching (dark relaxation) in advance photo‐darkened state follows a stretched exponential (SRE) with different stretching parameter for a‐As2S3 and a‐As2Se3. Within the J. C. Phillips approach we suppose that photo‐darkening in amorphous As2S3 films is, to some extent, accompanied by changes in short‐range order interactions, while photo‐darkening of amorphous As2Se3 is accompanied rather by changes in Coulomb interactions. The self‐bleaching process reduced the magnitude of photo‐darkening up to 45% and 60% for amorphous As2S3 and As2Se3 films, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
X‐ray‐induced redox changes can lead to incorrect assignments of the functional states of metals in metalloprotein crystals. The need for on‐line monitoring of the status of metal ions (and other chromophores) during protein crystallography experiments is of growing importance with the use of intense synchrotron X‐ray beams. Significant efforts are therefore being made worldwide to combine different spectroscopies in parallel with X‐ray crystallographic data collection. Here the implementation and utilization of optical and X‐ray absorption spectroscopies on the modern macromolecular crystallography (MX) beamline 10, at the SRS, Daresbury Laboratory, is described. This beamline is equipped with a dedicated monolithic energy‐dispersive X‐ray fluorescence detector, allowing X‐ray absorption spectroscopy (XAS) measurements to be made in situ on the same crystal used to record the diffraction data. In addition, an optical microspectrophotometer has been incorporated on the beamline, thus facilitating combined MX, XAS and optical spectroscopic measurements. By uniting these techniques it is also possible to monitor the status of optically active and optically silent metal centres present in a crystal at the same time. This unique capability has been applied to observe the results of crystallographic data collection on crystals of nitrite reductase from Alcaligenes xylosoxidans, which contains both type‐1 and type‐2 Cu centres. It is found that the type‐1 Cu centre photoreduces quickly, resulting in the loss of the 595 nm peak in the optical spectrum, while the type‐2 Cu centre remains in the oxidized state over a much longer time period, for which independent confirmation is provided by XAS data as this centre has an optical spectrum which is barely detectable using microspectrophotometry. This example clearly demonstrates the importance of using two on‐line methods, spectroscopy and XAS, for identifying well defined redox states of metalloproteins during crystallographic data collection.  相似文献   

10.
11.
Ion‐beam sputter‐deposition (IBSD) was used to reactively deposit tin oxide crystalline films at oxygen fluxes of 3–15 sccm and at substrate temperatures of 100–600 °C. Analysing the samples by X‐ray diffraction and Raman spectro‐ scopy yields a map of the crystalline structures in dependence on the growth parameters. In addition to SnO2, pure SnO films of high quality and an intermediate phase such as Sn2O3 or Sn3O4 can be reproducibly obtained. Thus, IBSD is, to our knowledge, the only thin‐film deposition technique verified yet to reliably produce samples in the entire composition range of tin oxides. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
Ar ion-induced chemical effect on MoO3, Bi2O3, and β-Bi2O3·2MoO3 has been studied by ESCA. It was found that the reduction behavior of Mo(VI) and Bi(III) in the complex oxide is quite different from that in the single oxides. A relative oxygen enrichment of the ion-bombarded and reduced surface was observed. It has been shown that the oxygen on the bombarded surface is in a special chemical state and incapable of reoxidizing the reduced low valent metal ion. But, exposing to air leads to the reoxidation of the reduced surface and leaves the lattice oxygen anion as the only surface oxygen species. The reduction behavior of β-Bi2O3·2MoO3 under Ar ion bombardment seems to be similar to its redox behavior in butene catalytic oxidation. It was suggested that both of them should reflect the effect of crystal structure on the redox potential of the oxides.  相似文献   

13.
The present work reports a detailed investigation on the speciation of iron in the pigments of decorated pottery fragments of cultural heritage relevance. The fragments come from the Gioiosa Guardia archaeological site in the area of the `Strait of Messina' (Sicily, Southern Italy), and date back to VI–V century BC. The purpose of this study is to characterize the main pigmenting agents responsible for the dark‐red coloration of the specimens using non‐destructive analytical techniques such as synchrotron radiation X‐ray absorption spectroscopy (SR‐XAS), a well established technique for cultural heritage and environmental subjects. Absorption spectra were collected at the Fe K‐edge on the Italian beamline for absorption and diffraction (BM8‐GILDA) at the European Synchrotron Radiation Facility in Grenoble (France). In order to determine the speciation of Fe in the samples, principal component analysis and least‐squares fitting procedures were applied to the near‐edge part of the absorption spectra (XANES). Details on the local structure around the Fe sites were obtained by analyzing the extended part of the spectra (EXAFS). Furthermore, an accurate determination of the average Fe oxidation state was carried out through analysis of the pre‐edge peaks of the absorption spectra. Samples resulted composed of an admixture of Fe2O3 (hematite or maghemite) and magnetite (Fe3O4), occurring in different relative abundance in the dark‐ and light‐colored areas of the specimens. The results obtained are complementary to information previously obtained by means of instrumental neutron activation analysis, Fourier transform infrared absorbance and time‐of‐flight neutron diffraction.  相似文献   

14.
A facile one‐pot synthetic route is reported to prepare algae‐like molybdenum disulfide/polypyrrole (MoS2/PPy) nanocomposite through a redox reaction between ammonium tetrathiomolybdate and pyrrole monomer under a hydrothermal condition without any other templates. The as‐prepared unique algae‐like MoS2/PPy nanocomposites are composed of few layer MoS2 nanosheets, which are covered with PPy. Structural and morphological characterizations of this unique nanocomposite are investigated by Fourier‐transform infrared spectra, Raman spectra, X‐ray diffraction pattern, X‐ray photoelectron spectra, energy‐dispersive X‐ray spectroscopy, and transmission electron microscopy. The as‐prepared MoS2/PPy nanocomposites exhibit an excellent peroxidase‐like catalytic activity toward the oxidation of 3,3,5,5‐tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) in acetate buffer solution (pH 4.0), which provides a facile strategy for the colorimetric detection of H2O2 with a high sensitivity.  相似文献   

15.
Two novel high‐temperature reactors for in situ X‐ray absorption spectroscopy (XAS) measurements in fluorescence are presented, each of them being optimized for a particular purpose. The powerful combination of these reactors with the turbo‐XAS technique used in a dispersive‐XAS beamline permits the study of commercial three‐way catalysts under realistic gas composition and temporal conditions.  相似文献   

16.
An innovative scheme to carry out continuous‐scan X‐ray absorption spectroscopy (XAS) measurements similar to quick‐EXAFS mode at the Energy‐Scanning EXAFS beamline BL‐09 at INDUS‐2 synchrotron source (Indore, India), which is generally operated in step‐by‐step scanning mode, is presented. The continuous XAS mode has been implemented by adopting a continuous‐scan scheme of the double‐crystal monochromator and on‐the‐fly measurement of incident and transmitted intensities. This enabled a high signal‐to‐noise ratio to be maintained and the acquisition time was reduced to a few seconds from tens of minutes or hours. The quality of the spectra (signal‐to‐noise level, resolution and energy calibration) was checked by measuring and analysing XAS spectra of standard metal foils. To demonstrate the energy range covered in a single scan, a continuous‐mode XAS spectrum of copper nickel alloy covering both Cu and Ni K‐edges was recorded. The implementation of continuous‐scan XAS mode at BL‐09 would expand the use of this beamline in in situ time‐resolved XAS studies of various important systems of current technological importance. The feasibility of employing this mode of measurement for time‐resolved probing of reaction kinetics has been demonstrated by in situ XAS measurement on the growth of Ag nanoparticles from a solution phase.  相似文献   

17.
The removal of the native oxides from the In0.53Ga0.47As surface by exposure to atomic hydrogen has been investigated by highly surface sensitive synchrotron radiation based photoelectron spectroscopy. This shows that it is possible to fully remove the arsenic oxides at low temperatures, while still leaving a low concentration of stable Ga2O and In2O at the surface, and no evidence of indium loss from the substrate. The removal of surface carbon contamination is also seen, however full removal is only detected in the absence of prior substrate annealing. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Results of measurements made at the SIRIUS beamline of the SOLEIL synchrotron for a new X‐ray beam position monitor based on a super‐thin single crystal of diamond grown by chemical vapor deposition (CVD) are presented. This detector is a quadrant electrode design processed on a 3 µm‐thick membrane obtained by argon–oxygen plasma etching the central area of a CVD‐grown diamond plate of 60 µm thickness. The membrane transmits more than 50% of the incident 1.3 keV energy X‐ray beam. The diamond plate was of moderate purity (~1 p.p.m. nitrogen), but the X‐ray beam induced current (XBIC) measurements nevertheless showed a photo‐charge collection efficiency approaching 100% for an electric field of 2 V µm?1, corresponding to an applied bias voltage of only 6 V. XBIC mapping of the membrane showed an inhomogeneity of more than 10% across the membrane, corresponding to the measured variation in the thickness of the diamond plate before the plasma etching process. The measured XBIC signal‐to‐dark‐current ratio of the device was greater than 105, and the X‐ray beam position resolution of the device was better than a micrometer for a 1 kHz sampling rate.  相似文献   

19.
The characteristics of the X‐ray attenuation in electrospun nano(n)‐ and micro(m)‐Bi2O3/polylactic acid (PLA) nanofibre mats with different Bi2O3 loadings were compared as a function of energy using mammography (i.e. tube voltages of 22–49 kV) and X‐ray absorption spectroscopy (XAS) (7–20 keV). Results indicate that X‐ray attenuation by electrospun n‐Bi2O3/PLA nanofibre mats is distinctly higher than that of m‐Bi2O3/PLA nanofibre mats at all energies investigated. In addition, with increasing filler loading (n‐Bi2O3 or m‐Bi2O3), the porosity of the nanofibre mats decreased, thus increasing the X‐ray attenuation, except for the sample containing 38 wt% Bi2O3 (the highest loading in the present study). The latter showed higher porosity, with some beads formed, thus resulting in a sudden decrease in the X‐ray attenuation.  相似文献   

20.
We have investigated the effect of trimethyl aluminum (TMA) and water (H2O) half‐cycle treatments on HF‐treated, and O3‐oxidized GaN surfaces at 300 °C. The in‐situ X‐ray photoelectron spectroscopy results indicate no significant re‐growth of Ga–O–N or self‐cleaning on HF‐treated and O3‐oxidized GaN substrates with exposure to water and TMA. This result is different from the self‐cleaning effect of Ga2O3 seen on sulfur‐treated GaAs or InGaAs substrates. O3 causes aggressive oxidation of GaN substrate and direct O–N bonding compared to H2O. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号