共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast X‐ray microfluorescence imaging with submicrometer‐resolution integrating a Maia detector at beamline P06 at PETRA III 下载免费PDF全文
Ulrike Boesenberg Christopher G. Ryan Robin Kirkham D. Peter Siddons Matthias Alfeld Jan Garrevoet Teresa Núñez Thorsten Claussen Thorsten Kracht Gerald Falkenberg 《Journal of synchrotron radiation》2016,23(6):1550-1560
The high brilliance of third‐generation synchrotron sources increases the demand for faster detectors to utilize the available flux. The Maia detector is an advanced imaging scheme for energy‐dispersive detection realising dwell times per image‐pixel as low as 50 µs and count rates higher than 10 × 106 s?1. In this article the integration of such a Maia detector in the Microprobe setup of beamline P06 at the storage ring PETRA III at the Deutsches Elektronen‐Synchrotron (DESY) in Hamburg, Germany, is described. The analytical performance of the complete system in terms of rate‐dependent energy resolution, scanning‐speed‐dependent spatial resolution and lower limits of detection is characterized. The potential of the Maia‐based setup is demonstrated by key applications from materials science and chemistry, as well as environmental science with geological applications and biological questions that have been investigated at the P06 beamline. 相似文献
2.
Jong Chul Han Ho Kyung Kim Dong Woon Kim Seungman Yun Hanbean Youn Soohwa Kam Jesse Tanguay Ian A. Cunningham 《Current Applied Physics》2014,14(12):1734-1742
We describe a multi-layer (“sandwich”) configuration detector consisting of two x-ray imaging flat-panel detectors for single-shot (single-kV) dual-energy imaging. An intermediate copper filter is used to increase spectral separation between the two detectors to improve contrast at the expense of image noise. Monte Carlo and cascaded-systems analyses of the signal and noise performance are described that quantify performance characteristics. Image quality of dual-energy images obtained from a prototype sandwich-detector system is evaluated using a figure of merit (FOM), defined as the squared contrast-to-noise ratio normalized by x-ray exposure for a mouse phantom for preclinical imaging. Demonstration dual-energy bone and soft-tissues images of a postmortem mouse are obtained using the prototype system. While the FOM with the single-shot detector is lower than that achieved using a conventional dual-shot (dual-kV) method, the single-shot approach may be preferable when imaging speed or insensitivity to motion artifacts is a primary concern. 相似文献
3.
Matthias Alfeld Mirwaes Wahabzada Christian Bauckhage Kristian Kersting Gerd Wellenreuther Pere Barriobero-Vila Guillermo Requena Ulrike Boesenberg Gerald Falkenberg 《Journal of synchrotron radiation》2016,23(2):579-589
Elemental distribution images acquired by imaging X‐ray fluorescence analysis can contain high degrees of redundancy and weakly discernible correlations. In this article near real‐time non‐negative matrix factorization (NMF) is described for the analysis of a number of data sets acquired from samples of a bi‐modal α+β Ti‐6Al‐6V‐2Sn alloy. NMF was used for the first time to reveal absorption artefacts in the elemental distribution images of the samples, where two phases of the alloy, namely α and β, were in superposition. The findings and interpretation of the NMF results were confirmed by Monte Carlo simulation of the layered alloy system. Furthermore, it is shown how the simultaneous factorization of several stacks of elemental distribution images provides uniform basis vectors and consequently simplifies the interpretation of the representation. 相似文献
4.
Fabian Westermeier Tina Autenrieth Christian Gutt Olaf Leupold Agnes Duri Andreas Menzel Ian Johnson Christian Broennimann Gerhard Grübel 《Journal of synchrotron radiation》2009,16(5):687-689
The first X‐ray photon correlation spectroscopy experiments using the fast single‐photon‐counting detector PILATUS (Paul Scherrer Institut, Switzerland) have been performed. The short readout time of this detector permits access to intensity autocorrelation functions describing dynamics in the millisecond range that are difficult to access with charge‐coupled device detectors with typical readout times of several seconds. Showing no readout noise the PILATUS detector enables measurements of samples that either display fast dynamics or possess only low scattering power with an unprecedented signal‐to‐noise ratio. 相似文献
5.
Kaori Hattori Ken'ichi Tsuchiya Kazuki Ito Yoko Okada Kotaro Fujii Hidetoshi Kubo Kentaro Miuchi Masaki Takata Toru Tanimori Hidehiro Uekusa 《Journal of synchrotron radiation》2009,16(2):231-236
The application of a two‐dimensional photon‐counting detector based on a micro‐pixel gas chamber (µ‐PIC) to high‐resolution small‐angle X‐ray scattering (SAXS), and its performance, are reported. The µ‐PIC is a micro‐pattern gaseous detector fabricated by printed circuit board technology. This article describes the performance of the µ‐PIC in SAXS experiments at SPring‐8. A dynamic range of >105 was obtained for X‐ray scattering from a polystyrene sphere solution. A maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks were observed in the high‐angle region in one accumulation of photons. 相似文献
6.
We have applied recently two XRF (micro x‐ray fluorescence) methods [micro‐Grazing Exit XRF (GE‐XRF) and confocal 3D‐XRF] to Japanese lacquerware ‘Tamamushi‐nuri.’ A laboratory grazing‐exit XRF (GE‐XRF) instrument was developed in combination with a micro‐XRF setup. A micro x‐ray beam was produced by a single capillary and a pinhole aperture. Elemental x‐ray images (2D images) obtained at different analyzing depths by micro GE‐XRF have been reported. However, it was difficult to directly obtain depth‐selective x‐ray spectra and 2D images. A 3D XRF instrument using two independent polycapillary x‐ray lenses and two x‐ray sources (Cr and Mo targets) was also applied to the same sample. 2D XRF images of a Japanese lacquerware showed specific distributions of elements at the different depths, indicating that ‘Tamamushi‐nuri’ lacquerware has a layered structure. The merits and disadvantages of both the micro GE‐XRF and confocal micro XRF methods are discussed. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
7.
Porous lead zirconate titanate (PbZr0.3Ti0.7O3, PZT30/70) thick films and detectors for pyroelectric applications have been fabricated on alumina substrates by screen-printing technology. Low temperature sintering of PZT thick films have been achieved at 850 °C by using Li2CO3 and Bi2O3 sintering aids. The microstructure of PZT thick film has been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dielectric properties were measured using HP 4284 at 1 kHz under 25 °C. The permittivity and loss tangent of the thick films were 94 and 0.017, respectively. Curie temperature of PZT thick film was 425 °C as revealed by dielectric constant temperature measurement. The pyroelectric coefficient was determined to be 0.9 × 10−8 Ccm−2 K−1 by dynamic current measurement. Infrared detector sensitive element of dual capacitance was fabricated by laser directly write technology. Detectivity of the detectors were measured using mechanically chopped blackbody radiation. Detectivity ranging from 1.23 × 108 to 1.75 × 108 (cm Hz1/2 W−1) was derived at frequency range from 175.5 Hz to 1367 Hz, and D*’s −3 dB cut-off frequency bandwidth was 1.2 kHz. The results indicate that the infrared detectors based on porous thick films have great potential applications in fast and wide-band frequency response conditions. 相似文献
8.
M. Sendova B. Kaiser M. Scalera V. Zhelyaskov 《Journal of Raman spectroscopy : JRS》2010,41(4):469-472
Micro‐Raman temperature study and X‐ray fluorescence (XRF) spectroscopy were used for characterization of the blue glaze on Saint John the Baptist—majolica terracotta relief attributed to Andrea Della Robbia and Saint John the Baptist with Cross—majolica terracotta statue attributed to Giovanni Della Robbia. Both objects are on permanent exhibition in the John and Mable Ringling Museum of Art in Sarasota, FL. This study proves that the detection of the 548 cm−1 Raman band alone cannot serve as evidence for presence of lazurite crystallites in the pigment in the glaze. It was established that the famous Della Robbia blue is due to the combined effect of Co Ni Cu Zn atoms and S3− ions embedded in a lead silicate matrix. It is proposed that the Della Robbia family used Co‐containing sulfide ores as a source for manufacturing their blue pigments. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
9.
为解决全场X射线荧光(XRF)成像中针孔形状和尺寸的选取问题,采用Geant4软件,模拟了6种不同类型针孔和4种不同的针孔孔径,分析了这些参数对点扩散函数和调制传递函数的影响;模拟了不同能量X射线荧光平面源的成像过程,并用均值滤波和Richardson迭代法对图像进行处理,分析了图像处理的效果。模拟结果表明:对于能量小于20 keV的荧光X射线,双锥孔结合直孔模型的点扩散函数尖锐性和等晕性更好,调制传递函数的截止频率更大,空间分辨更好,更适合做全场XRF成像的针孔;均值滤波结合Richardson迭代法的图像处理算法对全场XRF图像处理的效果较好。 相似文献
10.
Lucas J. Koerner Richard E. Gillilan Katherine S. Green Suntao Wang Sol M. Gruner 《Journal of synchrotron radiation》2011,18(2):148-156
Solution small‐angle X‐ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X‐ray mixed‐mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full‐well of >2 × 107 10 keV X‐rays, a maximum flux rate of 108 X‐rays pixel?1 s?1, and a sub‐pixel point‐spread function. Data from the MMPAD were quantitatively compared with data from a charge‐coupled device (CCD) fiber‐optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read‐noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample‐to‐detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read‐noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time‐resolved solution scattering measurements. 相似文献
11.
基于微通道板电子倍增电荷分割型阳极的成像探测器常用于行星大气、气辉等微弱信号探测。针对探测器读出电路增益不相等导致探测器成像产生畸变的问题,利用理论分析结合MATLAB仿真揭示了不同畸变图像的形成机制,在该基础上提出了一种探测器读出电路增益补偿方法减小探测器成像畸变。通过MATLAB仿真和实验测试结果表明该文提出的方法能够有效减小由于读出电路增益不相等导致的探测器成像畸变。 相似文献
12.
13.
The Pixium 4700 detector represents a significant step forward in detector technology for high‐energy X‐ray diffraction. The detector design is based on digital flat‐panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 × 2480 pixels with a pixel size of 154 µm × 154 µm, and thus it covers an effective area of 294 mm × 379 mm. Designed for medical imaging, the detector has good efficiency at high X‐ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high‐energy X‐ray diffraction are presented. Quantitative comparisons with a widespread high‐energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point‐spread function and distortion‐free image, allows for the acquisition of high‐quality diffraction data at high X‐ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes. 相似文献
14.
通过将闪烁体光纤面板与CMOS图像传感器耦合,研制了在线诊断X射线图像的CMOS探测系统。通过XOP软件计算,确定了响应能区为1~10 keV的CsI闪烁体厚度为30 m。在微点X射线源平台上,基于标准的Typ 18-d型分辨率板对CMOS探测系统的空间分辨能力进行了实验测试,结果为60 m。在神光Ⅲ原型激光装置上,利用该套CMOS探测系统在流体力学不稳定性与混合实验中对钛背光源的光谱进行了诊断,获得了清晰的类氢和类氦光谱图像。数据分析显示,实测的谱分辨为442,与理论分析符合较好。CMOS探测系统小巧轻便,性价比高,适合各大高校与科研院所用于在线诊断软X射线图像。 相似文献
15.
Dynamic X‐ray studies can reach temporal resolutions limited by only the X‐ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in‐pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count‐rate limitations and in‐pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high‐speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 103 X‐rays per pixel per train. When applied to turn‐by‐turn X‐ray beam characterization, single‐shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected. 相似文献
16.
17.
18.
19.
Nark‐Eon Sung Ik‐Jae Lee Kug‐Seong Lee Seong‐Hun Jeong Seen‐Woong Kang Yong‐Bi Shin 《Journal of synchrotron radiation》2015,22(5):1306-1311
A microprobe system has been installed on the nanoprobe/XAFS beamline (BL8C) at PLS‐II, South Korea. Owing to the reproducible switch of the gap of the in‐vacuum undulator (IVU), the intense and brilliant hard X‐ray beam of an IVU can be used in X‐ray fluorescence (XRF) and X‐ray absorption fine‐structure (XAFS) experiments. For high‐spatial‐resolution microprobe experiments a Kirkpatrick–Baez mirror system has been used to focus the millimeter‐sized X‐ray beam to a micrometer‐sized beam. The performance of this system was examined by a combination of micro‐XRF imaging and micro‐XAFS of a beetle wing. These results indicate that the microprobe system of the BL8C can be used to obtain the distributions of trace elements and chemical and structural information of complex materials. 相似文献
20.
Methodological challenges of optical tweezers‐based X‐ray fluorescence imaging of biological model organisms at synchrotron facilities 下载免费PDF全文
Eva Vergucht Toon Brans Filip Beunis Jan Garrevoet Stephen Bauters Maarten De Rijcke David Deruytter Colin Janssen Christian Riekel Manfred Burghammer Laszlo Vincze 《Journal of synchrotron radiation》2015,22(4):1096-1105
Recently, a radically new synchrotron radiation‐based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non‐contact laser‐based sample manipulation with synchrotron radiation confocal X‐ray fluorescence (XRF) microimaging for the first time at ESRF‐ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF‐related challenges are reported. In general, the applicability of the OT‐based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi‐elemental analysis is of relevance at the (sub)micrometre spatial resolution level. 相似文献