首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal wave characterization of thin films used in industrial applications can be a useful tool, not just to get information on the films' thermal properties, but to get information on structural-physical parameters, e.g. crystalline structure and surface roughness, and on the film deposition conditions, since the thermal film properties are directly related to the structural-physical parameters and to the deposition conditions. Different sets of TiCXOY thin films, deposited by reactive magnetron sputtering on steel, have been prepared, changing only one deposition parameter at a time. Here, the effect of the oxygen flow on the thermal film properties is studied. The thermal waves have been measured by modulated IR radiometry, and the phase lag data have been interpreted using an Extremum method by which the thermal coating parameters are directly related to the values and modulation frequencies of the relative extrema of the inverse calibrated thermal wave phases. Structural/morphological characterization has been done using X-ray diffraction (XRD) and atomic force microscopy (AFM). The characterization of the films also includes thickness, hardness, and electric resistivity measurements. The results obtained so far indicate strong correlations between the thermal diffusivity and conductivity, on the one hand, and the oxygen flow on the other hand.  相似文献   

2.
Amorphous carbon nitride (a-CNx) films were grown on silicon substrates by ArF excimer laser ablation of a graphite target in the presence of nitrogen at various gas pressures. By working at elevated pressures (up to 100 Pa), large amounts of nitrogen can be incorporated into the films (up to 40 at. %, which leads to a strong enhancement of their field emission properties. This behaviour was demonstrated to be mainly related to changes in the surface morphology of the samples, in connection with the development of graphite-like structures. Received: 22 February 2002 / Accepted: 3 March 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +33-(0)/388-106-230, E-mail: fogarassy@phase.c-strasbourg.fr  相似文献   

3.
Giant magnetoresistance in Hg 1−x−y Mn x Fe y Te crystals is caused by clusters with “antiferromagnetic” (Mn-Te-Mn-Te, Mn-Te-Fe-Te) and “ferromagnetic” (Fe-Fe-Fe) ordering. The effect is due to the fact that the charge carriers taking part in electric current interact with the “ferromagnetic” cluster subsystem (Fe-Fe-Fe) magnetized to saturation and become spin-polarized. These spin-polarized charge carriers are strongly scattered by the “antiferromagnetic” Mn-Te-Mn-Te and Mn-Te-Fe-Te clusters, because the magnetic moments inside the clusters and resultant moments of clusters have chaotic orientations. Investigations of kinetic coefficients of Hg 1−x−y Mn x Fe y Te crystals before and after thermal treatment show that there is no marked correlation between the giant magnetoresistance and charge-carrier concentration, mobility, and band parameters of crystals. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 28–33, October, 2007.  相似文献   

4.
SiO x H y C z nanometric layers are deposited from hexamethyldisiloxane by atmospheric pressure microwave plasma torch on Si(100) substrates submitted to temperatures varying on the range [0 °C; 120 °C]. Atomic force microscopy (AFM) characterizations of samples grown at intermediate substrate temperatures (~30 °C) demonstrate a layer-by-layer growth (Frank van der Merwe growth) leading to smooth flat and compact films while films deposited at lower and higher substrates temperatures show an island-like growth (Volmer-Weber growth) generating a high surface roughness. Concomitantly, a detailed infrared spectroscopy analysis of the growing films evidences structural modifications due to changes in the bond types, Si-O-Si conformation and stoichiometry correlated with scanning electron microscopy and AFM characterizations. Then, deposition conditions and specific microstructure are selected with the aim of generating 3-dimensional SiO x H y C z nanostructure arrays on nanoindented Si (100) templates. The first results are discussed.  相似文献   

5.
Aligned SiOx nanowire arrays standing on a Si substrate were successfully synthesized using a simple method by heating a single-crystalline Si slice covered with SiO2 nanoparticles at 1000 °C in a flowing Ar atmosphere. The SiOx nanowire arrays were characterized by scanning electron microscopy and transmission electron microscopy. The SiOx nanowires become progressively thinner from bottom to top. The formation process of the SiOx nanowire arrays is closely related to a vapor–solid mechanism. Room-temperature photoluminescence measurements under excitation at 260 nm showed that the SiOx nanowire arrays had a strong blue–green emission at 500 nm (about 2.5 eV), which may be related to oxygen defects. Received: 29 April 2002 / Accepted: 30 April 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +86-551-559-1434, E-mail: gwmeng@mail.issp.ac.cn  相似文献   

6.
Knowledge of the mechanical and electrical characteristics of one-dimensional nanostructures is critical for their future integration in nanoelectronic circuits. The present study analyses the behaviour of N-doped carbon nanotubes (CNx,x<0.1) under applied stresses inside a transmission electron microscope. The electrical resistance changes observed were substantial, with figures ranging from 42 to 182 k Ω, and are largely correlated with the extension of the contact area (electrode–nanotube or nanotube–nanotube). Despite the repeated deformation cycles and high bending angles achieved, the nanotubes kept their metallic nature throughout. In addition to this, it was noticed that the CNx nanotubes presented sections with several structural defects which acted as joints during their controlled bending. These areas represent high-resistive points which may lead to fatal structural failure, as demonstrated in the current induced failure experiments here reported. PACS 07.78.+s; 73.63.Fg; 73.63.-b  相似文献   

7.
The structures of amorphous CNx-Co films grown at different temperatures (T s = 200–365°C) are studied by X-ray diffraction. As the growth temperature increases above T s = 200°C, a concentration phase transition is found to occur in the amorphous state; this transition is related to a change in the major portion of carbon or cobalt in the structure of the cluster films. At T s = 365°C, a disorder-order phase transition, which is accompanied by the transition from the amorphous to crystalline state, occurs in the films.  相似文献   

8.
The effect of interdiffusion of aluminum and indium atoms on the exciton emission energy and binding energy in InxGa1?xAs/AlyGa1?yAs quantum dots is studied. It is shown that the emission energy increases monotonically with increasing diffusion length, while the binding energy has a maximum.  相似文献   

9.
The crystalline structure, change of magnetization, coercive force and remanent induction of Fe4-yAlyCx antiperovskite were investigated depending on the concentration of alloying elements. Correlation between atomic and magnetic ordering was established. Self-consistent calculations of the electronic structure of Fe4-yAlyCx with hypothetical crystal structures close by the composition to the experimentally studied antiperovskites confirmed the necessity of taking into account non-stoichiometry of this compound. Values of the magnetic moment and the heat of formation for all the structures under investigation were calculated.  相似文献   

10.
This paper presents results of experimental and theoretical piezoelectric studies of a group of mixed crystals of the type Zn1 - x - yBexMnySe. The fittings of theoretical to experimental amplitude and phase piezoelectric spectra were performed in a modified Jackson and Amer model. The influence of the surface treatment such as grinding, polishing and etching on the PZE spectra is analysed in the model of surface defects applied for the interpretation of the spectra for energies of photons below the energy gap of the crystal.  相似文献   

11.
A vacuum deposition method for producing SiOx〈Fe〉 composite metal-dielectric films in which the metal concentration in the SiOx dielectric matrix varies across thickness is described. The reflection and transmission of the films in the 2–12 μm IR spectral range are studied and their optical properties are simulated. In the temperature range 283–390 K, the temperature-sensitive properties of the SiOx〈Fe〉 films with a phase volume ratio of 23% (Fe): 77% (SiO) is investigated. For these films, the temperature coefficient of resistance is found. The feasibility of these films as a sensitive layer in microbolometers is demonstrated.  相似文献   

12.
Nanocrystalline multiphase titanium oxycarbide (TiCxOy) thin films composed of TiC2, TiO0.325, Ti2O3 and graphitic carbon have been deposited on titanium substrates, using energetic carbon ions delivered by the UNU/ICTP and the NX2 plasma focus devices operated at different repetition rates. X-ray diffraction (XRD) patterns of the nanocomposite films reveal the relative transformation of various oxide and carbide phases accompanied by the suppression of the TiC2 phase when the energy flux of the ion beam and the repetition rate are increased. A field emission scanning electron microscope (FESEM) with an energy dispersive X-ray spectroscopy (EDS) attachment reveals a non-porous microcrack-free nanocrystalline granular surface morphology of the composite films with uniform carbon distribution. X-ray photoelectron spectroscopy (XPS) confirms the formation of oxycarbides (TiCxOy) along with significant carbon adsorbate. Raman studies of the films also verify the relative phase transformation in the TiCxOy nanocomposite by tuning the deposition parameters. The Vickers microhardness of the sample surface is improved more than 400%. PACS 52.59.Hq; 52.77.Dq; 68.55.Jk; 81.15.-z; 81.65.Lp  相似文献   

13.
The deposition of carbon-free, silicon oxide (SiOx) films with a non-thermal, RF capillary jet at 27.12 MHz at normal pressure is demonstrated. The gas mixture for film deposition is constituted of argon, oxygen and small admixtures of octamethylcyclotetrasiloxane (Si4O4C8H24, 0.4 ppm). Surface analysis of the deposited films reveals their exceptionally low carbon content. The XPS atom percentage stays at 2% and less, which is near detection limit. The parametric study reported here focuses on the optimization of the deposition process with regard to the chemical and morphological surface properties of the coating by varying oxygen feed gas concentration (0–0.2%) and substrate temperature (10–50 °C).  相似文献   

14.
The effect of white and UV radiation on the phase composition of amorphous CN x films are studied by X-ray diffraction analysis and visible-range spectroscopy. The films have variable-range atomic order and consist of amorphous graphite clusters (30 Å) crystalline clusters (50–100 Å) of graphite, diamond, and carbon nitride phases; and intercluster medium with long-range (1–2 Å) atomic order. It is shown that irradiation of the films by white light facilitates the growth of fine graphite clusters. Irradiation by UV light suppresses the growth of the graphite and carbon nitride phases, favoring the growth of the diamond phase (1.5%). It is demonstrated that a change in the mesoscopic phase composition of the CN x films causes a change in the energy gap width in the visible range from E g = 0.75 eV for the films irradiated by white light to E g = 1.75 eV for those exposed to UV radiation.  相似文献   

15.
New types of amorphous graphite-like COx films were obtained by two ways: (i) magnetron sputtering of a graphite target in the gas mixture Ar+O2; and (ii) air annealing at 250–300 °C of a-C films deposited by magnetron sputtering in Ar. These films contain at most 18–22% atomic oxygen, depending on the way of preparation. They remain stable in air and vacuum up to 300 °C. The transition from graphite-like a-C to a-CO0.2 is accompanied by a sharp increase in electrical resistivity and IR transmittance. Two characteristic absorption bands at approximately 1700 and 1605 cm-1 appear and the G band in the Raman spectrum shifts to approximately 1605 cm-1. Electron diffraction reveals that only those films with 002 interlayer distance increased with respect to that of graphite may be saturated with oxygen up to approximately 22 at.%, until they become strongly vaporized. PACS 61.43.Dq; 78.30.Ly; 81.15.Cd; 81.40.Ef  相似文献   

16.
Nanocrystalline Zn1-xMnxS films (x=0.04, 0.08 and 0.12) were deposited on glass substrates at 400 K using a simple resistive thermal evaporation technique. All the deposited films were characterized by chemical, structural, morphological, optical and magnetic properties. Scanning electron microscopy and atomic force microscopy studies showed that all the films investigated were in nanocrystalline form with the grain size lying in the range 10–20 nm. All the films exhibited cubic structure and the lattice parameters increase linearly with composition. The absorption edge shifted from the higher-wavelength region to lower wavelengths with increase in Mn concentration. The magnetization increased sharply with increase of the Mn content up to x=0.08 and then decreased with further increase of the Mn content. Particularly, Zn0.92Mn0.08S concentration samples show a weak ferromagnetic nature, which might be the optimum concentration for optoelectronic and spintronic device applications. PACS 75.50.Pp; 78.66.Hf; 75.70.Ak; 75.75.+a  相似文献   

17.
Nanoporous SiO2 thin films with ultra-low dielectric constants were synthesized using a molecular template method. Uniform films with pore size between 10 and 20 nm were obtained as observed by N2 adsorption/desorption isotherms and transmission electron microscopy. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis were carried out to investigate the effect of n-hexane washing on structural properties before and after the surface modification process. The results showed that –OH bonds were substituted with –CH3 bonds in the films as a result of modification of trimethylchlorosilane (TMCS)/n-hexane solution. Four kinds of model were used to analyze the relationship between porosity and dielectric constant of the films, where the dielectric constant was determined from capacitance-voltage measurements. The investigation indicated that the corresponding relationship was in accord with that estimated by the Rayleigh model.  相似文献   

18.
Experimental results are presented on measurements of the crystal structure and heat capacity of nonstoichiometric cubic vanadium carbonitrides VCxNy (x + y = 0.85) in the region of disorder-order phase transitions. It is found that ordered phases V6(C,N)5□ and V8(C,N)7□ with the structures of the V6C5 and V8C7 types form in vanadium carbonitrides at a temperature of ~1100 K through the first-order phase transition mechanism. The channels of disorder-order transitions are determined. It is found that, in the nonmetal sublattice of the detected ordered phases, C and N atoms form one sublattice and structural vacancies □ form another sublattice. C and N atoms are randomly distributed in their sublattice.  相似文献   

19.
Transport and field-emission properties of as-synthesized CNx and BNCx (x<0.1) multi-walled nanotubes were compared in detail. Individual ropes made of these nanotubes and macrofilms of those were tested. Before measurements, the nanotubes were thoroughly characterized using high-resolution and energy-filtered electron microscopy, electron diffraction and electron-energy-loss spectroscopy. Individual ropes composed of dozens of CNx nanotubes displayed well-defined metallic behavior and low resistivities of ∼10–100 kΩ or less at room temperature, whereas those made of BNCx nanotubes exhibited semiconducting properties and high resistivities of ∼50–300 MΩ. Both types of ropes revealed good field-emission properties with emitting currents per rope reaching ∼4 μA(CNx) and ∼2 μA (BNCx), albeit the latter ropes se- verely deteriorated during the field emission. Macrofilms made of randomly oriented CNx or BNCx nanotubes displayed low and similar turn-on fields of ∼2–3 V/μm. 3 mA/cm2 (BNCx) and 5.5 mA/cm2 (CNx) current densities were reached at 5.5 V/μm macroscopic fields. At a current density of 0.2–0.4 mA/cm2 both types of compound nanotubes exhibited equally good emission stability over tens of minutes; by contrast, on increasing the current density to 0.2–0.4 A/cm2, only CNx films continued to emit steadily, while the field emission from BNCx nanotube films was prone to fast degradation within several tens of seconds, likely due to arcing and/or resistive heating. Received: 29 October 2002 / Accepted: 1 November 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. Fax: +81-298/51-6280, E-mail: golberg.dmitri@nims.go.jp  相似文献   

20.
Third order nonlinear optical susceptibilities χ<3> of ternary Zn1−xMgxSe and Cd1−xMgxSe crystals have been measured using standard degenerate four-wave mixing (DFWM) method at 532 nm. The nonlinear transmission technique has been applied to check if our crystals exhibit two-photon absorption. The studied Zn1−xMgxSe and Cd1−xMgxSe solid solutions were grown from the melt by the modified high-pressure Bridgman method. For both crystals the energy gap increases with increasing Mg content. In the case of Zn1−xMgxSe, it was found that the value of third order nonlinear optical susceptibility χ<3> decreases with increasing Mg content. An explanation of this behaviour results from the dependence of optical nonlinearities on the energy band gap Eg of the studied crystals. In the case of Cd1txMgxSe with low content of Mg, no response was observed for the studied wavelength since the energy gap in such crystals is smaller than the photon energy of the used laser radiation. It was also found that the value of third order nonlinear optical susceptibility χ<3> for Cd0.70Mg0.30Se is higher than for Zn0.67Mg0.33Se. This behaviour can be understood if one take into consideration that the free carrier concentration in Cd1−xMgxSe samples is about four orders of magnitude higher than that in Zn1txMgxSe ones with comparable Mg content respectively. It is commonly known that when the electric conductivity increases, the values of nonlinear optical properties increase. From the performed measurements one can conclude that the incorporation of Mg as constituent into ZnSe and CdSe crystals leads to a change of the third order nonlinear optical susceptibilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号