首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study a modified Van der Pol–Duffing circuit, and present a rigorous verification for existence of chaos in this system. The arguments are given in the manner of computer-assisted proof by using topological horseshoe theory.  相似文献   

2.
3.
In this article, based on the stability theory of fractional‐order systems, chaos synchronization is achieved in the fractional‐order modified Van der Pol–Duffing system via a new linear control approach. A fractional backstepping controller is also designed to achieve chaos synchronization in the proposed system. Takagi‐Sugeno fuzzy models‐based are also presented to achieve chaos synchronization in the fractional‐order modified Van der Pol–Duffing system via linear control technique. Numerical simulations are used to verify the effectiveness of the synchronization schemes. © 2015 Wiley Periodicals, Inc. Complexity 21: 116–124, 2016  相似文献   

4.
We consider in this paper the synchronization dynamics of coupled chaotic Van der Pol–Duffing systems. We first find that with the judicious choose of the set of initial conditions, the model exhibits two strange chaotic attractors. The problem of synchronizing chaos both on the same and different chaotic orbits of two coupled Van der Pol–Duffing systems is investigated. The stability boundaries of the synchronization process between two coupled driven Van der Pol model are derived and the effects of the amplitude of the periodic perturbation of the coupling parameter on these boundaries are analyzed. The results are provided on the stability map in the (q, K) plane.  相似文献   

5.
Duffing–Van der Pol equation with fifth nonlinear-restoring force and two external forcing terms is investigated. The threshold values of existence of chaotic motion are obtained under the periodic perturbation. By second-order averaging method and Melnikov method, we prove the criterion of existence of chaos in averaged system under quasi-periodic perturbation for ω2 = 1 + εσ, n = 1, 3, 5, and cannot prove the criterion of existence of chaos in second-order averaged system under quasi-periodic perturbation for ω2 = 1 + εσ, n = 2, 4, 6, 7, 8, 9, 10, where σ is not rational to ω1, but can show the occurrence of chaos in original system by numerical simulation. Numerical simulations including heteroclinic and homoclinic bifurcation surfaces, bifurcation diagrams, Lyapunov exponent, phase portraits and Poincaré map, not only show the consistence with the theoretical analysis but also exhibit the more new complex dynamical behaviors. We show that cascades of interlocking period-doubling and reverse period-doubling bifurcations from period-2 to -4 and -6 orbits, interleaving occurrence of chaotic behaviors and quasi-periodic orbits, transient chaos with a great abundance of period windows, symmetry-breaking of periodic orbits in chaotic regions, onset of chaos which occurs more than one, chaos suddenly disappearing to period orbits, interior crisis, strange non-chaotic attractor, non-attracting chaotic set and nice chaotic attractors. Our results show many dynamical behaviors and some of them are strictly departure from the behaviors of Duffing–Van der Pol equation with a cubic nonlinear-restoring force and one external forcing.  相似文献   

6.
This paper presents chaos synchronization between single and double wells Duffing–Van der Pol (DVP) oscillators with Φ4 potential based on the active control technique. The technique is applied to achieve global synchronization between identical double-well DVP oscillators, identical single-well DVP oscillators and non-identical DVP oscillators, consisting of the double-well and the single-well DVP oscillators, respectively. Numerical simulations are also presented to verify the analytical results.  相似文献   

7.
The autonomous Duffing oscillator, and its van der Pol modification, are known to admit time-dependent first integrals for specific values of parameters. This corresponds to the existence of Darboux polynomials, and in fact more can be shown: that there exist Liouvillian first integrals which do not depend on time. They can be expressed in terms of the Gauss and Kummer hypergeometric functions, and are neither analytic, algebraic nor meromorphic. A criterion for this to happen in a general dynamical system is formulated as well.  相似文献   

8.
We consider a system of two coupled Van der Pol-Duffing oscillators with Huygens coupling as an appropriate model of two mechanical oscillators connected to a movable platform via a spring. We examine the complicated dynamics of the system and study its multistable behavior. In particular, we reveal the co-existence of several chaotic regimes and study the structure of the associated riddled basins.  相似文献   

9.
This paper deals with the problem of control and synchronization of coupled second-order oscillators showing a chaotic behavior. A classical feedback controller is first used to stabilize the system at its equilibrium. An adaptive observer is then designed to synchronize the states of the master and slave oscillators using a single scalar signal corresponding to an observable state variable of the driving oscillator. An interesting feature of the proposed approach is that it can be used for chaos control as well as synchronization purposes. Numerical simulations results confirming the analytical predictions are shown and pspice simulations are also performed to confirm the efficiency of the proposed control scheme.  相似文献   

10.
The behaviors of system which alternate between Duffing oscillator and van der Pol oscillator are investigated to explore the influence of the switches on dynamical evolutions of system. Switches related to the state and time are introduced, upon which a typical switched model is established. Poincaré map of the whole switched system is defined by suitable local sections and local maps, and the formal expression of its Jacobian matrix is obtained. The location of the fixed point and associated Floquet multipliers are calculated, based on which two-parameter bifurcation sets of the switched system are obtained, dividing the parameter space into several regions corresponding to different types of attractors. It is found that cascading of period-doubling bifurcations may lead the system to chaos, while fold bifurcations determine the transition between period-3 solution and chaotic movement.  相似文献   

11.
This paper investigates the chaotic behavior of an extended Duffing Van der pol oscillator in a ϕ6 potential under additive harmonic and bounded noise excitations for a specific parameter choice. From Melnikov theorem, we obtain the conditions for the existence of homoclinic or heteroclinic bifurcation in the case of the ϕ6 potential is bounded, which are complemented by the numerical simulations from which we illustrate the bifurcation surfaces and the fractality of the basins of attraction. The results show that the threshold amplitude of bounded noise for onset of chaos will move upwards as the noise intensity increases, which is further validated by the top Lyapunov exponents of the original system. Thus the larger the noise intensity results in the less possible chaotic domain in parameter space. The effect of bounded noise on Poincare maps is also investigated.  相似文献   

12.
What do the three names in the title have in common? The purpose of this paper is to relate them in a new and, hopefully, interesting way. Starting with the Fibonacci numeration system — also known as Zeckendorff's system — we will pose ourselves the problem of extending it in a natural way to represent all real numbers in (0,1). We will see that this natural extension leads to what is known as the ?-system restricted to the unit interval. The resulting complete system of numeration replicates the uniqueness of the binary system which, in our opinion, is responsible for the possibility of defining the Van der Corput sequence in (0,1), a very special sequence which besides being uniformly distributed has one of the lowest discrepancy, a measure of the goodness of the uniformity.Lastly, combining the Fibonacci system and the binary in a very special way we will obtain a singular function, more specifically, the inverse of one of the family of Riesz-Nágy.  相似文献   

13.
This paper is devoted to the analytical formula for zero Lyapunov exponent describing the dynamics of interacting chaotic systems with noise. The deduced analytical prediction is in a good agreement with the value of zero Lyapunov exponent obtained numerically for two unidirectionally coupled Rössler oscillators. We have shown that this good agreement is observed for a wide diapason of the values of the control parameters.  相似文献   

14.
This paper gives the generalized upper and lower solution method for the forced Duffing equation

and obtains existence theorems for -periodic solutions, where is a Carathéodory function. Our results generalize or extend some famous results obtained by Mawhin(1985), Habets(1990), Nkashama(1989) and Nieto(1990).

  相似文献   


15.
In this study, the homotopy analysis method is developed to give periodic solutions of delayed differential equations that describe time-delayed position feedback on the Duffing system. With this technique, some approximate analytical solutions of high accuracy for some possible solutions are captured, which agree well with the numerical solutions in the whole time domain. Two examples of dynamic systems are considered, focusing on the periodic motions near a Hopf bifurcation of an equilibrium point. It is found that the current technique leads to higher accurate prediction on the local dynamics of time-delayed systems near a Hopf bifurcation than the energy analysis method or the traditional method of multiple scales.  相似文献   

16.
In this letter, we implement a relatively new analytical technique, the homotopy perturbation method (HPM), for solving linear partial differential equations of fractional order arising in fluid mechanics. The fractional derivatives are described in Caputo derivatives. This method can be used as an alternative to obtain analytic and approximate solutions of different types of fractional differential equations applied in engineering mathematics. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. Some numerical examples are presented to illustrate the efficiency and reliability of HPM. He's HPM, which does not need small parameter is implemented for solving the differential equations. In this method, a homotopy is introduced to be constructed for the equation. The initial approximations can be freely chosen with possible unknown constants that can be determined by imposing the boundary and initial conditions. It is predicted that HPM can be found widely applicable in engineering. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

17.
We prove that the mixed discriminant of doubly stochastic n-tuples of semidefinite hermitian n×n matrices is bounded below by and that this bound is uniquely attained at the n-tuple . This result settles a conjecture posed by R. Bapat in 1989. We consider various generalizations and applications of this result.  相似文献   

18.
19.
In this paper, we consider a nonhomogeneous space‐time fractional telegraph equation defined in a bounded space domain, which is obtained from the standard telegraph equation by replacing the first‐order or second‐order time derivative by the Caputo fractional derivative , α > 0 and the Laplacian operator by the fractional Laplacian ( ? Δ)β ∕ 2, β ∈ (0,2]. We discuss and derive the analytical solutions under nonhomogeneous Dirichlet and Neumann boundary conditions by using the method of separation of variables. The obtained solutions are expressed through multivariate Mittag‐Leffler type functions. Special cases of solutions are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This work presents a new technique to securely transmit and retrieve a message signal via chaotic systems. The main contribution of this paper is two-fold: the way that the message signal is encrypted in the frequency of a sinusoidal term and a novel frequency estimator for retrieving the message. In our system, a two-valued message signal modulates the frequency of the Duffing oscillator sinusoidal term. Then, two chaotic signals generated by the oscillator are encrypted with a Delta modulator and sent through a noisy channel. A Lyapunov-based observer is used in the receiver side to retrieve the sinusoidal term that contains the message and a novel frequency estimator is then used to retrieve the confidential message signal. The system was implemented in Matlab/Simulink in order to analyze its performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号