首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper a thick hollow cylinder with finite length made of two dimensional functionally graded material (2D-FGM) subjected to transient thermal boundary conditions is considered. The volume fraction distribution of materials, geometry and thermal boundary conditions are assumed to be axisymmetric but not uniform along the axial direction. The finite element method with graded material properties within each element is used to model the structure and the Crank–Nicolson finite difference method is implemented to solve time dependent equations of the heat transfer problem. Two-dimensional heat conduction in the cylinder is considered and variation of temperature with time as well as temperature distribution through the cylinder are investigated. Effects of variation of material distribution in two radial and axial directions on the temperature distribution and time response are studied. The achieved results show that using two-dimensional FGM leads to a more flexible design so that transient temperature, maximum amplitude and uniformity of temperature distributions can be modified to achieve required specifications by selecting a suitable material distribution profile in two directions.  相似文献   

2.
Based on linear three-dimensional piezoelasticity, the Legendre orthogonal polynomial series expansion approach is used for determining the wave characteristics in hollow cylinders composed of the functionally graded piezoelectric materials (FGPM) with open circuit. The displacement and electric potential components, expanded in a series of Legendre polynomials, are introduced into the governing equations along with position-dependent material constants so that the solution of the wave equation is reduced to an eigenvalue problem. Dispersion curves for FGPM and the corresponding non-piezoelectric hollow cylinders are calculated to show the piezoelectric effect. The influence of the ratio of radius to thickness is discussed. Electric potential and displacement distributions are used to show the piezoelectric effect on the flexural torsional mode. The influence of the polarizing direction on the piezoelectric effect is illustrated. For the radial and axial polarization, the piezoelectric effect reacts mostly on the longitudinal mode. For circumferential polarization, the piezoelectric effect reacts mostly on the torsional mode. In the FGPM hollow cylinder, piezoelectricity can weaken the guided wave dispersion.  相似文献   

3.
The problem of a Griffith crack in an unbounded orthotropic functionally graded material subjected to antipole shear impact was studied. The shear moduli in two directions of the functionally graded material were assumed to vary proportionately as definite gradient. By using integral transforms and dual integral equations, the local dynamic stress field was obtained. The results of dynamic stress intensity factor show that increasing shear moduli’s gradient of FGM or increasing the shear modulus in direction perpendicular to crack surface can restrain the magnitude of dynamic stress intensity factor.  相似文献   

4.
An analytical solution is obtained for transient torsional vibration of a finite hollow cylinder with initial axial stress. The cylinder is subjected to dynamic shearing stress at the internal surface and is fixed at the external surface. The basic equations are presented and the solution is obtained by means of Fourier series expansion technique and the separation of variables method. The effects of the initial stress on the natural frequencies and transient torsional responses are presented and discussed.  相似文献   

5.
The free vibration of a functionally graded material hollow sphere submerged in a compressible fluid medium is exactly analyzed. The sphere is assumed to be spherically isotropic with material constants being inhomogeneous along the radial direction. By employing a separation technique as well as the spherical harmonics expansion method, the governing equations are simplified to an uncoupled second-order ordinary differential equation, and a coupled system of two such equations. Solutions to these equations are given when the elastic constants and the mass density are power functions of the radial coordinate. Numerical examples are finally given to show the effect of the material gradient on the natural frequencies. The project is supported by the National Natural Sciences Foundation of China(No. 19872060).  相似文献   

6.
An analytic solution to the axisymmetric problem of a long, radially polarized, hollow cylinder composed of functionally graded piezoelectric material (FGPM) rotating about its axis at a constant angular velocity is presented. For the case that electric, thermal and mechanical properties of the material obey different power laws in the thickness direction, distributions for radial displacement, stresses and electric potential in the FGPM hollow cylinder are determined by using the theory of electrothermoelasticity. Some useful discussions and numerical examples are presented to show the significant influence of material nonhomogeneity, and adopting suitable graded indexes and applying suitable geometric size and rotating velocity ω may optimize the rotating FGPM hollow cylindrical structures. This will be of particular importance in modern engineering application.  相似文献   

7.
Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are assumed to vary exponentially in the radial direction, and Poisson's ratio is assumed to be constant. A unified governing equation is derived from the equilibrium equations, compatibility equation, deformation theory of elasticity and the stress-strain relationship. The governing second-order differential equation is solved in terms of a hypergeometric function for the elastic deformation of rotating functionally graded cylinders. Dependence of stresses in the cylinder on the inhomogeneous parameters, geometry and boundary conditions is examined and discussed. The proposed solution is validated by comparing the results for rotating functionally graded hollow and solid cylinders with the results for rotating homogeneous isotropic cylinders. In addition, a viscoelastic solution to the rotating viscoelastic cylinder is presented, and dependence of stresses in hollow and solid cylinders on the time parameter is examined.  相似文献   

8.
In this paper transient thermal stresses in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) based on classical theory of thermoelasticity are considered. The volume fraction distribution of materials, geometry and thermal load are assumed to be axisymmetric but not uniform along the axial direction. The finite element method with graded material properties within each element is used to model the structure. Temperature, displacements and stress distributions through the cylinder at different times are investigated. Also the effects of variation of material distribution in two radial and axial directions on the thermal stress distribution and time responses are studied. The achieved results show that using 2D-FGM leads to a more flexible design so that time responses of structure, maximum amplitude of stresses and uniformity of stress distributions can be modified to a required manner by selecting suitable material distribution profiles in two directions.  相似文献   

9.
The free vibration of an arbitrarily thick orthotropic piezoelectric hollow cylinder with a functionally graded property along the thickness direction and filled with a non-viscous compressible fluid medium is investigated. The analysis is directly based on the three-dimensional exact equations of piezoelasticity using the so-called state space formulations. The original functionally graded shell is approximated by a laminate model, of which the solution will gradually approach the exact one when the number of layers increases. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement at the interface. Analytical frequency equations are derived for different electrical boundary conditions at two cylindrical surfaces. As particular cases, free vibration of multi-layered piezoelectric hollow cylinder and wave propagation in infinite homogeneous cylinder are studied. Numerical comparison with available results is made and dispersion curves predicted from the present three-dimensional analysis are given. Numerical examples are further performed to investigate the effects of various parameters on the natural frequencies.  相似文献   

10.
In this paper, natural frequencies characteristics of a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) based on three-dimensional equations of elasticity is considered. The axisymmetric conditions are assumed for the 2D-FGM cylinder. The material properties of the cylinder are varied in the radial and axial directions with power law functions. Effects of volume fraction distribution and FGM configuration on the natural frequencies of a simply supported cylinder are analyzed. Also, the effects of length and thickness of the cylinder are considered for different material distribution profiles. Three-dimensional equations of motion are used and the eigen value problem is developed based on direct variational method. Finite element method with graded material characteristics within each element of the structure is used for solution. The study shows that the 2D-FGM cylinder exhibit interesting frequency characteristics when the constituent volume fractions and its configuration are varied.  相似文献   

11.
For the thermoelastic dynamic axisymmetric problem of a finite orthotropic hollow cylinder, one comes closer to reality to involve the effect of axial strain than to consider the plane strain case only. However, additional mathematical difficulties should be encountered and a different solution procedure should be developed. By the separation of variables, the thermoelastic axisymmetric dynamic problem of an orthotropic hollow cylinder taking account of the axial strain is transformed to a Volterra integral equation of the second kind for a function of time, which can be solved efficiently and quickly by the interpolation method. The solutions of displacements and stresses are obtained. It is noted that the present method is suitable for an orthotropic hollow cylinder with an arbitrary thickness subjected to arbitrary axisymmetric thermal loads. Numerical comparison is made to show the effect of the axial strain on the displacements and stresses. The project supported by the National Natural Science Foundation of China (10172075) and China Postdoctoral Science Foundation (20040350712)  相似文献   

12.
基于轴对称平面应变问题的运动方程及弹性梯度材料的应力和位移关系,通过将圆筒分层使材料性质离散为分段常数函数,同时在时域内应用有限差分格式,求得了材料性质沿径向梯度变化的圆筒弹性动力学解。本文解不仅适合任意梯度的弹性圆筒,而且容易满足多种形式的初始条件和边界条件。通过对材料性质沿径向为连续函数分布和分段函数分布的梯度圆筒数值分析,并与已有文献结果比较,得出本文解与已有文献的解吻合较好,验证了本文解的正确性和有效性。对材料性质为分段函数的三层组合圆筒分析发现,中间功能梯度层的指数分布因子对圆筒的径向位移和应力随时间变化都会产生显著影响。  相似文献   

13.
Summary  In this paper, the dynamic anti-plane crack problem of two dissimilar homogeneous piezoelectric materials bonded through a functionally graded interfacial region is considered. Integral transforms are employed to reduce the problem to Cauchy singular integral equations. Numerical results illustrate the effect of the loading combination parameter λ, material property distribution and crack configuration on the dynamic stress and electric displacement intensity factors. It is found that the presence of the dynamic electric field could impede of enhance the crack propagation depending on the time elapsed and the direction of applied electric impact. Received 4 December 2001; accepted for publication 9 July 2002 This work is supported by the National Natural Science Foundation of China through Grant No. 10132010.  相似文献   

14.
Summary In this paper, the behavior of a crack in functionally graded piezoelectric/piezomagnetic materials subjected to an anti-plane shear loading is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using a Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. These equations are solved using the Schmidt method. The relations among the electric displacement, the magnetic flux and the stress field near the crack tips are obtained. Numerical examples are provided to show the effect of the functionally graded parameter on the stress intensity factors of the crack.The authors are grateful for financial support from the Natural Science Foundation of Hei Long Jiang Province (A0301), the National Natural Science Foundation of China (50232030, 10172030), the Natural Science Foundation with Excellent Young Investigators of Hei Long Jiang Province(JC04-08) and the National Science Foundation with Excellent Young Investigators (10325208).  相似文献   

15.
利用微分方程的级数求解方法,分析了两端简支的有限长功能梯度圆筒的轴对称稳态热弹性问题,推导出了稳态温度场与应力场的解析解。分析中采用指数函数模型来描述FGM圆筒中材料性能在厚度方向的连续变化,同时忽略温度对材料性能的影响。另外,论文以金属钼和多铝红柱石制成的功能梯度圆筒为例,给出了稳态温度场和应力场的数值结果。  相似文献   

16.
The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally graded interlayer with a crack perpendicular to the boundaries. The impact load is applied on the face of the crack. Fourier transform and Laplace transform methods are used to formulate the present problem in terms of a singular integral equation in Laplace transform domain. Considering variations of parameters such as the nonhomogeneity constant, the thickness ratio and the crack length, the dynamic stress intensity factors (DSIFs) in time domain are studied and some meaningful conclusions are obtained.The project supported by the National Science Foundation for Excellent Young Investigators (10325208), the National Natural Science Foundation of China (10432030) and the China Postdoctoral Science Foundation (2004036018)The English text was polished by Ron Marshall.  相似文献   

17.
In this paper, heat wave propagation and coupled thermoelasticity without energy dissipation in functionally graded thick hollow cylinder is presented based on Green–Naghdi theory. The material properties are supposed to vary as a power function of radius across the thickness of cylinder. The cylinder is considered in axisymmetry and plane strain conditions and it is divided to many sub-cylinders (layers) across the thickness. Each sub-cylinder is considered to be made of isotropic material and functionally graded property can be created by suitable arrangement of layers. The Galerkin finite element method and Newmark finite difference method are employed to solve the problem. The time history of second sounds and displacement wave propagation are obtained for various values of power function. Computed results agree well with the published data.  相似文献   

18.
Summary  The problem of a piezoceramic hollow sphere is investigated analytically based on the 3D equations of piezoelasticity. The functionally graded property of the material along the radial direction can be taken arbitrarily in the paper. Displacement and stress functions are introduced, and two independent state equations with variable coefficients are derived. By employing the laminate model, the two state equations are transformed into ones with constant variables from which the state variable solution is easily obtained. Two linear relationships between the state variables at the inner and outer spherical surfaces are established. Numerical calculations are performed for different boundary conditions imposed on the spherical surfaces. Received 28 February 2001; accepted for publication 26 June 2001  相似文献   

19.
This paper is concerned with pth moment exponential stability of stochastic Cohen–Grossberg neural networks (SCGNN) with time-varying connection matrix and delays. With the help of Lyapunov function, stochastic analysis technique and the generalized Halanay inequality, a set of novel sufficient conditions on pth moment exponential stability for SCGNN is given. These results are helpful to design exponentially stable non-autonomous Cohen–Grossberg neural networks when stochastic effects are taken into consideration in practice. This work was supported in part by the High-Tech Research and Development Program of China under Grant No. 2006AA04A104, the National Natural Science Foundation of China under Grant No. 50677014, China Postdoctoral Science Foundation under Grant No. 20070410300, the Hunan Provincial Natural Science Foundation of China under Grant No. 07JJ4001.  相似文献   

20.
Study of the flow field around the large scale offshore structures under the action of waves and viscous currents is of primary importance for the scouring estimation and protection in the vicinity of the structures. But very little has been known in its mechanism when the viscous effects is taken into consideration. As a part of the efforts to tackle the problem, a numerical model is presented for the simulation of the flow field around a fixed vertical truncated circular cylinder subjected to waves and viscous currents based on the depth-averaged Reynolds equations and depth-averagedk-ɛ turbulence model. Finite difference method with a suitable iteration defect correct method and an artificial open boundary condition are adopted in the numerical process. Numerical results presented relate to the interactions of a pure incident viscous current with Reynolds numberRe=105, a pure incident regular sinusoidal wave, and the coexisting of viscous current and wave with a circular cylinder, respectively. Flow fields associated with the hydrodynamic coefficients of the fixed cylinder, as well as corresponding free surface profiles and wave amplitudes, are discussed. The present method is found to be relatively straightforward, computationally effective and numerically stable for treating the problem of interactions among waves, viscous currents and bodies. The project supported by the National Natural Science Foundation of China and Foundation of State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号