首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Rh addition upon catalyst characteristics and performance in methane steam reforming was investigated using Rh-promoted Ni/Al2O3 catalysts. The number of reduced metal atoms exposed on the surface increased for the Rh-promoted catalysts. Rh-promoted catalysts showed an increase in CH4 reforming activity; however, constant turnover frequencies for promoted and unpromoted catalysts suggest that the increase in the number of metal surface atoms caused the activity enhancement. Rh also facilitated reduction of Ni/Al2O3.  相似文献   

2.
In this paper, the effect of additive Fe on Ni/Al2O3 catalyst for CO2 methanation was studied. A series of bimetallic Ni–Fe catalysts with different Ni/Fe ratios were prepared by impregnation method. For comparison, monometallic Fe‐based and Ni‐based catalysts were also prepared by the same method. The characterization results showed that adding Fe to Ni catalyst on the premise of a low Ni loading(≦12 wt.%) enhanced CO2 methanation performance. However, when the Ni loading reached 12 wt.%, the catalytic activity decreased with the increase of Fe content, but still higher than the corresponding Ni‐based catalyst without Fe. Among them, the 12Ni3Fe catalyst exhibited the highest CO2 conversion of 84.3 % and nearly 100% CH4 selectivity at 50000 ml g‐1 h‐1 and 420 °C. The enhancement effect of adding Fe on CO2 methanation was attributed to the dual effect of suitable electronic environment and increased reducibility generated by Fe species.  相似文献   

3.
A study was carried out on the properties of Ni/Al2O3 and Cu-ZnO/Al2O3 composites supported on ceramic honeycomb monoliths made from synthetic cordierite in the carbon dioxide conversion of methane and the partial oxidation of methanol. The structured nickel-alumina catalysts are significantly more efficient than the conventional granulated catalysts. The improved working stability of these catalysts was achieved by adjusting the acid-base properties of the surface by introducing sodium and potassium oxides, which leads to inhibition of surface carbonization. The hydrogen yield was close to 90% in the partial oxidation of methanol with a stoichiometric reagent ratio in the presence of the Cu-ZnO/Al2O3/cordierite catalyst. A synergistic effect was found, reducing the selectivity of CO formation in the presence of the Cu-ZnO catalyst relative to samples derived from the individual components Cu and ZnO. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 5, pp. 299–306, September–October, 2007.  相似文献   

4.
The effect of MoO3 addition to alumina supported vanadia catalysts on the catalytic activity for the selective catlaytic reduction of NO is investigated. Upon the addition of MoO3, catalytic activity is enhanced and the particle size of V2O5 which is shown by the results of XRD and Raman spectroscopy is decreased. The MoO3-V2O5/Al2O3 catalyst also exhibits more resistance to SO2 deactivation than V2O5/Al2O3 does.  相似文献   

5.
A series of La-doped Al2O3 catalysts were prepared and tested for the vapor phase hydrofluorination of C2H2 to vinyl fluoride (CH2CHF, VF). It was found that the La-doped catalyst gave a stable catalytic performance and a higher selectivity to the desired VF and a lower selectivity to coke deposition compared with the pure Al2O3 catalyst. The enhancement in VF selectivity on the La-doped catalyst was due to the elimination of acidic sites on the Al2O3 surface by the addition of La2O3, evidenced by NH3-TPD results, which could also explain the declined selectivity to coke deposition on the catalyst. Raman result indicated there were two different vibration forms of CH distortion and CC expansion for the coke deposition.  相似文献   

6.
The Ag/Al2O3 catalyst supported on cordierite honeycomb (Ag/Al2O3/ cordierite) is highly active forthe reduction of lean NOx by ethanol. Addition of H2O enhances the NOx reduction to CO2 and N2, and suppresses the formation of by-products such as CO, CH3CHO and C2H4.  相似文献   

7.
Oscillations in temperatures of catalyst bed as well as concentrations of gas phase species at the exit of reactor were observed during the partial oxidation of methane to synthesis gas over Ru/Al2O3 in the temperature range of 600 to 850 °C. XRD, H2-TPR and in situ Raman techniques was used to characterize the catalyst. Two types of ruthenium species, i.e. the ruthenium species weakly interacted with Al2O3 and that strongly interacted with the support, were identified by H2-TPR experiment. These species are responsible for two types of oscillation profiles observed during the reaction. The oscillations were the result of these ruthenium species switching cyclically between the oxidized state and the reduced state under the reaction condition. These cyclic transformations, in turn, were the result of temperature variations caused by the varying levels of the strongly exothermic CH4 combustion and the highly endothermic CH4 reforming (with H2O and CO2) reactions (or the less exothermic direct partial oxidation of methane to CO and H2), which were favored by the oxidized and the metallic sites, respectively. The major pathway of synthesis gas formation over the catalyst was via the combustion-reforming mechanism.  相似文献   

8.
Pulse reaction showed that Co/Al2O3 catalyst was active for the high-temperature decomposition of CH4 and CO2. CH4 mainly was completely decomposed to give surface carbon, which could be inactivated quickly in the absence of enough O(ad) (arising from dissociation of CO2). CO2 was dissociatively adsorbed on Co(0) sites to give CO(ad) and O(ad), which was a slow step. Further decomposition of CO(ad) happened in the case of CO2 decomposition.  相似文献   

9.
In the current paper, dry (CO2)-reforming of glycerol, a new reforming route, was carried out over alumina (Al2O3)-supported, non-promoted and lanthanum-promoted nickel (Ni) catalysts. Both sets of catalysts were synthesized via a wet co-impregnation procedure. Physicochemical characterization of the catalysts showed that the promoted catalyst possessed smaller metal crystallite size, hence higher metal dispersion compared to the virgin Ni/Al2O3 catalyst. This was also corroborated by the surface images captured by the FESEM analysis. From temperature-programmed calcination analysis, the derivative weight profiles revealed two peaks, which represent a water elimination peak at a temperature range of 373 to 473 K followed by nickel nitrate decomposition from 473 to 573 K. In addition, BET surface area measurements gave 85.0 m2·g−1 for the non-promoted Ni catalyst, whilst the promoted catalysts showed an average of 1% to 6% improvement depending on the La loadings. Significantly, reaction studies at 873 K showed that glycerol dry reforming successfully produced H2. The 2%La-Ni/Al2O3 catalyst, which possessed the largest BET surface area, gave an optimum H2 generation (9.70%) at a glycerol conversion of 24.5%.  相似文献   

10.
包卓然  崔艳喜  孙鹏  孙琪  石雷 《物理化学学报》2013,29(11):2444-2450
对丙三醇和苯胺在Co或Ni促进的Cu/SiO2-Al2O3催化剂上气相合成3-甲基吲哚进行了研究.采用N2吸附、氢气程序升温还原(H2-TPR)、电感耦合等离子体(ICP)发射光谱、X射线衍射(XRD)、透射电子显微镜(TEM)、氨程序升温脱附(NH3-TPD)及热重(TG)分析等技术对催化剂进行了表征.结果表明,向Cu/SiO2-Al2O3催化剂加入钴或镍助剂改善了催化剂的催化性能,钴比镍更加有效.在催化剂Cu-Co/SiO2-Al2O3和Cu-Ni/SiO2-Al2O3上,反应第3 h,3-甲基吲哚收率分别达到47%和45%,而且催化剂经过6次再生收率仍能达到44%和42%.各种表征表明,向Cu/SiO2-Al2O3催化剂加入钴或镍助剂能增强铜和载体之间的相互作用,其结果不仅促进了铜粒子在载体表面的分散度,而且有效减少了反应过程中铜组分的流失.另外,加入钴或镍助剂还能减少催化剂的中强酸中心数,从而提高3-甲基吲哚的选择性,并且抑制积炭的形成.此外,钴助剂还能增加催化剂的弱酸中心数,促进3-甲基吲哚的生成.提出了金属铜与弱酸中心共同促进3-甲基吲哚合成的催化反应机理.  相似文献   

11.
In this work, the metal dispersion of the Pd/Al2O3 catalyst prepared by sol-gel method is improved by an adequate optimisation of the preparative variables. First, the gelation temperature and the ageing time are selected, in order to avoid the reduction of the metal precursor (palladium acetylacetonate, Pd(acac)2) by the solvent (sec-butanol, sB). The metal sintering effect on the catalysts treated in oxygen at 500°C is then minimized when the alumina pore size is controlled by the variation of the alumium alkoxide (AsB) concentration and the acetic acid amount ([AcA]/[AsB]). The appearance of new palladium particles on the alumina surface and the matching between the particle diameters and the pore sizes were also effective for the metallic surface area improvement on the samples treated in oxygen at 800°C. Compared to the reference catalysts, the higher metal dispersion obtained on the sol-gel ones was the determinant factor for their higher catalytic activity in methane combustion.  相似文献   

12.
Former studies concerning the formation of the compounds in the pseudobinary systems of Bi2O3-MO type (M =Ca, Sr, Ca+Sr) have shown that the reaction which occurs with the highest rate is that between Bi2O3 and CaO. In the present work CaCO3 was used as CaO source. We carried out an investigation of the thermal decomposition of CaCO3 in the presence of Bi2O3 in comparison with the decomposition of pure CaCO3.The presence of Bi2O3 exerts a complex influence on the CaCO3 decomposition acting on the nucleation as well as on the diffusion of CO2. The decomposition of the samples with low Bi2O3 content follows the mechanism of a contracting sphere. A change from surface nucleation to bulk nucleation is recorded for higher amounts of Bi2O3.  相似文献   

13.
Carbon dioxide reforming (CDR) of methane to synthesis gas over supported nickel catalysts has been reviewed. The present review mainly focuses on the advantage of ceria based nickel catalysts for the CDR of methane. Nickel catalysts supported on ceria–zirconia showed the highest activity for CDR than nickel supported on other oxides such as zirconia, ceria and alumina. The addition of zirconia to ceria enhances the catalytic activity as well as the catalyst stability. The catalytic performance also depends on the crystal structure of Ni–Ce–ZrO2. For example, nickel catalysts co-precipitated with Ce0.8Zr0.2O2 having cubic phase gave synthesis gas with CH4 conversion more than 97% at 800 °C and the activity was maintained for 100 h during the reaction. On the contrary, Ni–Ce–ZrO2 having tetragonal phase (Ce0.8Zr0.2O2) or mixed oxide phase (Ce0.5Zr0.5O2) deactivated during the reaction due to carbon formation. The enhanced catalytic performance of co-precipitated catalyst is attributed to a combination effect of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and the finely dispersed nano size NiO x crystallites, resulting in the intimate contact between Ni and Ce0.8Zr0.2O2 particles. The Ni/Ce–ZrO2/θ–Al2O3 also exhibited high catalytic activity during CDR with a synthesis gas conversion more than 97% at 800 °C without significant deactivation for more than 40 h. The high stability of the catalyst is mainly ascribed to the beneficial pre-coating of Ce–ZrO2 resulting in the existence of stable NiO x species, a strong interaction between Ni and the support, and an abundance of mobile oxygen species in itself. TPR results further confirmed that NiO x formation was more favorable than NiO or NiAl2O4 formation and further results suggested the existence of strong metal-support interaction (SMSI) between Ni and the support. Some of the important factors to optimize the CDR of methane such as reaction temperature, space velocity, feed CO2/CH4 ratio and H2O and/or O2 addition were also examined.  相似文献   

14.
Composite supports CeO2-ZrO2-Al2O3 (CZA) and CeO2-ZrO2-Al2O3-La2O3 (CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperature-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Catalytic activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. They also have significant potential in industrial application because of their high performance and low cost.  相似文献   

15.
The catalytic behaviors of Pd (1.4 wt%) catalysts supported on CeO2-ZrO2-La2O3 mixed oxides with different Ce/Zr molar ratios were investigated for methanol decomposition. Nitrogen adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD) and Pd dispersion analysis were used for their characterization. Pd/Ce0.76Zr0.18 La0.06O1.97 catalyst showed the highest BET surface area, best Pd dispersion capability and strongest metal-support interaction. Moreover, XPS showed that there was lattice defect oxygen or mobile oxygen. According to the result of O 1s measurements the lattice defect oxygen or mobile oxygen helped to maintain Pd in a partly oxidized state and increased the activity for methanol decomposition. The Pd/Ce0.76Zr0.18La0.06O1.97 catalyst exhibited the best activity. A 100% conversion of methanol was achieved at around 260 °C, which was about 20-40 °C lower than other catalysts  相似文献   

16.
采用共沉淀法制备了系列铜负载量不同的Cu/Fe2O3水煤气变换(WGS)催化剂,并考察了铜负载量对催化剂结构和水煤气变换反应性能的影响. 结果表明,Cu/Fe2O3催化剂呈现出良好的水煤气反应性能,当CuO质量分数为20%时,催化剂的WGS性能最优,250 ℃时CO转化率高达97.2%,同时热稳定性也最好. 运用X射线粉末衍射(XRD)、N2物理吸脱附和H2程序升温还原(H2-TPR)等手段对Cu/Fe2O3催化剂的物相、织构特征及还原性能进行了表征,结果表明,CuFe2O4物种的存在极大地改善了催化剂的还原性能和WGS反应活性. 这是由于CuFe2O4特殊的尖晶石结构有利于Cu微晶的稳定;同时,CuFe2O4在低温下即被还原为单质铜,有利于促进催化剂体系中电子的转移. 此外,通过(NH4)2CO3溶液处理,研究了独立相CuO对Cu/Fe2O3催化剂WGS反应性能的影响,结果发现,独立相CuO的存在,有利于H原子在各组分传递,从而促进催化剂的CuFe2O4的还原,改善Cu/Fe2O3催化剂的WGS反应性能.  相似文献   

17.
The structure of Ti/Al2O3 supports (0–14 wt% Ti) and Co/Ti/Al2O3 catalysts (3 wt% Co) was examined by EXAFS. The results indicated that the Ti was present primarily as a highly dispersed surface phase. The Ti EXAFS results indicated that the Ti species were octahedrally coordinated. Evidence of Ti—Ti interactions was found for all loadings (2–14 wt% Ti) suggesting that the Ti surface species are present as small clusters of TiO2.The Co EXAFS results showed evidence for several structurally different Co surface phases as a function of Ti loading. Evidence of a Co species interacting with the Ti surface phase was observed for the 3% Co/2% Ti-3%Co/6%Ti catalysts. At the highest loadings studied, 3%Co/8%Ti and 3%Co/14%Ti, evidence was found for a CoTiO3-like phase.  相似文献   

18.
Pt‐Co/Al2O2 catalyst has been studied for CO2 reforming of CH4 to synthesis gas. It was found that the catalytic performance of me catalyst was sensitive to calcination temperature. When Co/Al2O3 was calcined at 1473 K prior to adding a small amount of Pt to it, the resulting bimetallic catalyst showed high activity, optimal stability and excellent resistance to carbon deposition, which was more effective to the reaction than Co/Al2O3 and Pt/Al2O3 catalysts. At lower metal loading, catalyst activity decreased in the following order: Pt‐Co/ Al2O3 > Pt/Al2O3 > Co/Al2O3. With 9% Co, the Co/Al2O3 calcined at 923 K was also active for CO2 reforming of CH4, however, its carbon formation was much more fast man that of the Pt‐Co/Al2O3 catalyst. The XRD results indicated that Pt species well dispersed over the bimetallic catalyst. Its high dispersion was related to the presence of CoAl2O4, formed during calcining of Co/Al2O3 at high temperature before Pt addition. Promoted by Pt, Co/Al2O4 in the catalyst could be reduced partially even at 923 K, the temperature of pre‐reduction for the reaction, confirmed by TPR. Based on these results, it was considered that the zerovalent platinum with high dispersion over the catalyst surface and the zerovalent cobalt resulting from Co/Al2O4 reduction are responsible for high activity of the Pt‐Co/Al2O3 catalyst, and the remain Co/Al2O4 is beneficial to suppression of carbon deposition over the catalyst.  相似文献   

19.
Fischer-Tropsch syntheses (FTS) were carried out in a slurry phase over Ru/Al2O3 catalysts using hexadecane as a solvent. The outcome of the FTS was dependent on the oxide support, calcination temperature, synthesis gas composition and sulfur content. The addition of Mn/Na to Ru/Al2O3 was effective in raising the initial activity and C5+ selectivity, but after 20 hours, the performance of the modified catalyst was similar to that of the unmodified catalyst. An additional investigation involving the use of fresh vs used catalysts demonstrated that an agglomeration of the metallic Ru, at least in part, does occur during the reaction.  相似文献   

20.
The effect of H2S on the activity and selectivity of catalysts (Ru/Al2O3, Pd/Al2O3 and Ru and Pd promoted molydena-alumina) was different (on differnt catalysts and different conversions of cyclohexene). Ru-containing catalysts showed higher sulfur sensitivities than the Pd-containing ones. The sequence of catalysts by their H2S uptake related to mass of catalyst was PdMo/Al2O3RuMo/Al2O3Mo/Al2O3>Pd/Al2O3Ru/Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号