首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partition coefficient and gas solubility data have been assembled from the published chemical and engineering literature for solutes dissolved in anhydrous 1-butyl-3-methylimidazolium dicyanamide, 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, and 4-cyano-1-butylpyrridinium bis(trifluoromethylsulfonyl)imide. More than 60 experimental data points were gathered for each IL solvent. The compiled experimental data were used to derive Abraham model correlations for describing the solute transfer properties into the three anhydrous IL solvents from both the gas phase and water. The derived mathematical correlations described the observed solute transfer properties, expressed as the logarithm of the water-to-IL partition coefficient and logarithm of the gas-to-IL solvent partition coefficient, to within standard deviations of 0.125 log units (or less). Abraham model ion-specific equation coefficients are also calculated for the 1-butyl-2,3-dimethylimidazolium and 4-cyano-1-butylpyridinium cations.  相似文献   

2.
We studied the aggregation behavior of two short-chain room-temperature ionic liquids. Previous surface tension studies have shown that 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)) aggregates in water. We observed the same behavior for another ionic liquid, 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (bdmimBF(4)). We carried out a thermodynamic study of the mixtures between water and the two butylimidazolium salts to investigate this unusual behavior for cations with short chains by determining the surface thermal coefficient, b(T,P). Plotting b(T,P) as a function of the molar fraction (X) of the two salts showed a clear discontinuity at X = 0.016 for bmimBF(4) and X = 0.004 for bdmimBF(4). This discontinuity could be attributed to a transition such as an aggregation.  相似文献   

3.
The crystal structures and thermal behavior of the 1-(2-methoxyethyl)-2,3-dimethylimidazolium chloride and hexa-fluorophosphate salts are compared with the analogous 1-butyl-2,3-dimethylimidazolium salts to examine the influence of the ether oxygen on salt thermal properties for a typical constituent cation used in the preparation of ionic liquids.  相似文献   

4.
A series of imidazolium salts with the nitrile functional group attached to the alkyl side chain, viz. [CnCNmim][X] (where CnCNmim is the 1-alkylnitrile-3-methylimidazolium cation and Cn= (CH2)(n), n = 1-4; X = Cl, PF(6), and BF(4)) and [C3CNdmim][X] (where CnCNdmim is the 1-alkylnitrile-2,3-dimethylimidazolium cation and C(n) = (CH2)(n), n = 3; X = Cl, PF(6), and BF(4)), have been prepared and characterized using spectroscopic methods. The majority of the nitrile-functionalized imidazolium salts can be classed as ionic liquids since they melt below 100 degrees C. Four of the imidazolium salts have been characterized in the solid state using single-crystal X-ray diffraction analysis to reveal an extensive series of hydrogen bonds between H atoms on the cation and the anion. The relationship between the solid-state structure and the melting point is discussed. Key physical properties (density, viscosity, and solubility in common solvents) of the low melting ionic liquid have been determined and are compared with those of the related 1-alkyl-3-methylimidazolium and 1-alkyl-2,3-dimethylimidazolium ionic liquids. It was envisaged that these ionic liquids could act as both solvent and ligand for catalyzed reactions, and this application is demonstrated in hydrogenation reactions, which show that retention of the catalyst in the ionic liquid during product extraction is extremely high.  相似文献   

5.
A series of low-melting-point salts with hexakisdicyanonitrosomethanidolanthanoidate anions has been synthesised and characterised: (C(2) mim)(3) [Ln(dcnm)(6)] (1?Ln; 1?Ln=1?La, 1?Ce, 1?Pr, 1?Nd), (C(2) C(1) mim)(3) [Pr(dcnm)(6)] (2?Pr), (C(4) C(1) pyr)(3) [Ce(dcnm)(6)] (3?Ce), (N(1114))(3) [Ln(dcnm)(6)] (4?Ln; 4?Ln=4?La, 4?Ce, 4?Pr, 4?Nd, 4?Sm, 4?Gd), and (N(1112OH) )(3) [Ce(dcnm)(6)] (5?Ce) (C(2) mim=1-ethyl-3-methylimidazolium, C(2) C(1) mim=1-ethyl-2,3-dimethylimidazolium, C(4) C(1) py=N-butyl-4-methylpyridinium, N(1114) =butyltrimethylammonium, N(1112OH) =2-(hydroxyethyl)trimethylammonium=choline). X-ray crystallography was used to determine the structures of complexes 1?La, 2?Pr, and 5?Ce, all of which contain [Ln(dcnm)(6)](3-) ions. Complexes 1?Ln and 2?Pr were all ionic liquids (ILs), with complex 3?Ce melting at 38.1?°C, the lowest melting point of any known complex containing the [Ln(dcnm)(6)](3-) trianion. The ammonium-based cations proved to be less suitable for forming ILs, with complexes 4?Sm and 4?Gd being the only salts with the N(1114) cation to have melting points below 100?°C. The choline-containing complex 5?Ce did not melt up to 160?°C, with the increase in melting point possibly being due to extensive hydrogen bonding, which could be inferred from the crystal structure of the complex.  相似文献   

6.
Fourier-transform infrared (FTIR) and time-resolved IR spectroscopies have been used to study vibrational band positions, vibrational energy relaxation (VER) rates, and reorientation times of anions in several ionic liquid (IL) solutions. The ILs primarily investigated are based on the 1-butyl-2,3-dimethylimidazolium ([BM(2)IM]) cation with thiocyanate (NCS-), dicyanamide (N(CN)2-), and tetrafluoroborate (BF4-) anions. Spectroscopic studies are carried out near 2000 cm-1 for the C[Triple Bond]N stretching bands of NCS- and N(CN)2- as the IL anion as well as for NCS-, N(CN)2-, and azide (N3-) anions dissolved in [BM2IM][BF4]. The VER studies of N(CN)2- are reported for the first time. VER of N3-, NCS-, and N(CN)2- is measured in normal solvents, such as N-methylformamide, to compare with the IL solutions. The spectral shifts and VER rates of the anions in IL solution are quite similar to those in polar aprotic, conventional organic solvents, i.e., dimethylsulfoxide, and significantly different than those in methanol, in which there is hydrogen bonding. Similar studies were also carried out for the anions in another IL, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), in which the C2 hydrogen is present. The results for the anions are similar to those in the [BM2IM] containing ILs, in which the C2 hydrogen is methyl substituted. This suggests that substituting this hydrogen has, at most, a minor effect on the degree of hydrogen bonding in the anion-IL solvation interaction based on the infrared spectra and dynamics.  相似文献   

7.
Two new inorganic-organic hybrid manganese(II) halide crystals,namely[BMMIm]_2[MnCl_4](1,BMMIm=1-butyl-2,3-dimethylimidazolium) and[BMMIm]_2[MnBr_4](2),have been obtained simply by heating/stirring with nearly 100%yield.Single-crystal X-ray diffraction (SCXRD) study reveals that 1 crystallizes in triclinic space group of P1 with a=10.0176(7),b=14.9603(11),c=12.9086(8)?,a=91.060(4)°,β=110.204(5)°,g=92.361(4)°,V=1235.19(12)?~3,Z=2,D_c=1.353 g·cm~(-3),F(000)=526,μ=0.978 mm~(-1),R=0.0410 and w R=0.0690 (I2σ(I)) and M_r=503.23;2 belongs to orthorhombic space group of P2_12_12_1 with a=10.0176(7),b=14.9603(11),c=17.4450(14)?,V=2614.4(3)?~3,Z=4,D_c=1.730 g·cm~(-3),F(000)=1340,μ=6.629 mm~(-1),R=0.0440 and w R=0.0520 (I2σ(I)) and M_r=681.07.The ionic compounds 1 and 2 are composed of mononuclear tetrahedral[Mn X_4]~(2-)anion and two ionic liquid cations of[BMMIm]~+.The photoluminescence (PL)of 1 and 2 was characterized and the influence of halogen atom types on PL was investigated.  相似文献   

8.
The hydrogen bonding structures of room-temperature ionic liquids 1,3-dimethylimidazolium methyl sulfate and 1-butyl-3-methylimidazolium hexafluorophosphate have been studied by infrared spectroscopy. High-pressure infrared spectral profiles and theoretical calculations allow us to make a vibrational assignment of these compounds. The imidazolium C-H bands of 1,3-dimethylimidazolium methyl sulfate display anomalous non-monotonic pressure-induced frequency shifts. This discontinuity in frequency shift is related to enhanced C-H...O hydrogen bonding. This behavior is in contrast with the trend of blue shifts in frequency for the methyl C-H stretching mode at ca. 2960 cm(-1). Our results indicated that the imidazolium C-H groups are more favorable sites for hydrogen bonding than the methyl C-H groups in the pure 1,3-dimethylimidazolium methyl sulfate. Nevertheless, both methyl C-H and imidazolium C-H groups are favorable sites for C-H...O hydrogen bonding in a dilute 1,3-dimethylimidazolium methyl sulfate/D(2)O mixture. Hydrogen bond-like C-H...F interactions were observed between PF(6)(-) and H atoms on the alkyl side chains and imidazolium ring for 1-butyl-3-methylimidazolium hexafluorophosphate.  相似文献   

9.
A dicationic ruthenium–alkylidene complex [Ru(dmf)3(IMesH2)(?CH‐2‐(2‐PrO)‐C6H4)][(BF4)2] ( 1 ; IMesH2=1,3‐dimesitylimidazolin‐2‐ylidene) has been prepared and used in continuous metathesis reactions by exploiting supported ionic‐liquid phase (SILP) technology. For these purposes, ring‐opening metathesis polymerization (ROMP)‐derived monoliths were prepared from norborn‐2‐ene, tris(norborn‐5‐ene‐2‐ylmethyloxy)methylsilane, and [RuCl2(PCy3)2(CHPh)] (Cy=cyclohexyl) in the presence of 2‐propanol and toluene and surface grafted with norborn‐5‐en‐2‐ylmethyl‐N,N,N‐trimethylammonium tetrafluoroborate ([NBE‐CH2‐NMe3][BF4]). Subsequent immobilization of the ionic liquid (IL), 1‐butyl‐2,3‐dimethylimidazolium tetrafluoroborate ([BDMIM][BF4]), containing ionic catalyst 1 created the SILP catalyst. The use of a second liquid transport phase, which contained the substrate and was immiscible with the IL, allowed continuous metathesis reactions to be realized. High turnover numbers (TONs) of up to 3700 obtained in organic solvents for the ring‐closing metathesis (RCM) of, for example, N,N‐diallyltrifluoroacetamide, diethyl diallylmalonate, diethyl di(methallyl)malonate, tert‐butyl‐N,N‐diallylcarbamate, N,N‐diallylacetamide, diphenyldiallylsilane, and 1,7‐octadiene, as well as in the self‐metathesis of methyl oleate, could be further increased by using biphasic conditions with [BDMIM][BF4]/heptane. Under continuous SILP conditions, TONs up to 900 were observed. Due to the ionic character of the initiator, catalyst leaching into the transport phase was very low (<0.1 %). Finally, the IL can, together with decomposed catalyst, be removed from the monolithic support by flushing with methanol. Upon reloading with [BDMIM][BF4]/ 1 , the recycled support material again qualified for utilization in continuous metathesis reactions.  相似文献   

10.
合成了通式为[M(Py)m][TCNQ]n(M=Mn,m=4;M=Co,Ni,Cu,m=2;TCNQ=7,7,8,8-四氰基对苯醌二甲烷,n=2,3)的8个过渡金属吡啶配离子的TCNQ电荷转移盐,通过元素分析、红外光谱、顺磁共振谱、光电子能谱、磁化率和电导率对这些电荷转移盐进行了表征,结果表明,在这些电荷转移盐分子中存在TCNQ-和TCNQ0,且TCNQ-与TCNQ0相互作用形成结构单元[TCNQ]n2-(n=2,3),各个结构单元沿一维方向堆积形成分子柱,部分电荷从[TCNQ]n2-向[M(Py)m]2+转移,导致化合物中的金属表现为混合价态.其中3个电荷转移盐具有良好的导电性.  相似文献   

11.
Some general comments about ionic liquids (ILs) and carbohydrates are given. The main scope of the review is to discuss the present state of the art of chemical modification of cellulose applying IL as reaction media considering own research results. ILs, namely 1-butyl-3-methylimidazolium chloride (BMIMCl), 1-ethyl- 3-methylimidazolium chloride (EMIMCl), 1-butyl-2,3-dimethylimidazolium chloride (BDMIMCl), 1-allyl-2,3-dimethylimidazolium bromide (ADMIMBr) and 1-ethyl-3- methylimidazolium acetate (EMIMAc) are solvents for cellulose (even for high molecular bacterial synthesized cellulose) and can easily be applied as reaction media for cellulose modification. We investigated the homogeneous acylation, carbanilation and silylation of the biopolymer cellulose. Under mild conditions and within short reaction time at low temperature (65 °C to 80 °C) and low excess of reagent, various cellulose esters and carbanilates, dendronized cellulose and trimethylsilyl cellulose were obtained. The DS of the cellulose derivatives can be controlled by varying the reaction time, reaction temperature and the IL used as reaction medium.  相似文献   

12.
3,6‐Dinitropyrazolo[4,3‐c]pyrazole was prepared using an efficient modified process. With selected cations, ten nitrogen‐rich energetic salts and three metal salts were synthesized in high yield based on the 3,6‐dinitropyrazolo[4,3‐c]pyrazolate anion. These compounds were fully characterized by IR and multinuclear NMR spectroscopies, as well as elemental analyses. The structures of the neutral compounds 4 and its salt 16 were confirmed by single‐crystal X‐ray diffraction showing extensive hydrogen‐bonding interactions. The neutral pyrazole precursor and its salts are remarkably thermally stable. Based on the calculated heats of formation and measured densities, detonation pressures (22.5–35.4 GPa) and velocities (7948–9005 m s?1) were determined, and they compare favorably with those of TNT and RDX. Their impact and friction sensitivities range from 12 to >40 J and 80 to 360 N, respectively. These properties make them competitive as insensitive and thermally stable high‐energy density materials.  相似文献   

13.
With the purpose of assessing the reactivity of chloride ions dissolved in ionic liquids (ILs), a relative scale for the solvation of chloride is given for a series of ILs based on the bis(trifluoromethane)sulfonimide ([Tf(2)N]) anion and different cations, 1-butyl-3-methylimidazolium ([bmim]), 1-butyl-2,3-dimethylimidazolium ([bdmim]), 1-butyl-1-methylpyrrolidinium ([bmpy]), 1-butylpyridinium ([bpy]), 1-pentyl-1,1,1-triethylammonium ([C(5)e(3)am]), and 1-(2-hydroxy)ethyl-3-methylimidazolium ([mimeOH]). Insights into the solvation of chloride are achieved by the thermodynamic study of the reaction of dissociation of a chloride-templated nickel(II) metallacage performed at various temperatures by UV-visible spectroscopy in each IL. The order of chloride solvation [C(5)e(3)am][Tf(2)N] < [bmpy][Tf(2)N] < [bmim][Tf(2)N] 相似文献   

14.
Three types of pyridinium salts, i.e., 1-ethylpyridin-1-ium cetyl-PEG10 sulfate (PYET), 1-butylpyridin-1-ium cetyl-PEG10 sulfate (PYBU), and 1-(3-methoxypropyl)pyridin-1-ium cetyl-PEG10 sulfate (PYMP), have been prepared and evaluated for their activation property of Burkholderia cepacia lipase by comparison to the control IL-coated enzymes, 1-butyl-2,3-dimethylimidazolium cetyl-PEG10 sulfate-coated lipase PS (IL1-PS). Among the tested pyridinium salt-coated lipases, the PYET-coated lipase PS (PYET-PS) exhibited the best results; the transesterification of 1-(pyridin-2-yl)ethanol, 1-(pyridin-3-yl)ethanol, 1-(pyridin-4-yl)ethanol, or 4-phenylbut-3-en-2-ol proceeded faster than those of the IL1-PS-catalyzed reaction while maintaining an excellent enantioselectivity (E?>?200). This improved efficiency was found to be dependent on the increased Kcat value.  相似文献   

15.
Straightforward access to hydridoborate-based ionic liquids (BILs) is provided. They fall into a barely developed area of research and are of interest as, for example, reagents for organic synthesis. A series of pure [BH(4)](-) ILs with 1-butyl-2,3-dimethylimidazolium (BMMIM), 1-ethyl-3-methylimidazolium (EMMIM), 1-propyl-1-methylpiperidinium (PropMPip), and1-butyl-1-methylpyrrolidinium (BMP) cations were prepared. All synthesized ILs are well soluble in CH(2)Cl(2). We developed a procedure that gives clean products with correct elemental analyses. In contrast to earlier reports, which when conducted by us yielded only mixtures of the boranate anion with major halide contamination (maximum [BH(4)](-) content: 77.5?%). These materials can be viewed as the starting material for the (hypothetical) hydrogen-storage redox shuttling sequence between [BH(4)](-) and [B(12)H(12)](2-), in which the triboranate anion [B(3)H(8)](-) is a formal intermediate. Here we also developed a facile route to [B(3)H(8)](-) ILs with [BMMIM](+), [EMMIM](+), [PropMPip](+), and [NBu(4)](+), in which Na[BH(4)] reacts in situ (enhanced by ultrasound) with the solvent CH(2)Cl(2) as the oxidizing agent to give the triboranate IL in high yield and purity according to the equation: 3?[BH(4)](-)+2?CH(2)Cl(2)+[Cat](+)→[B(3)H(8)](-)[Cat](+)+H(2)+2?CH(3)Cl+2?Cl(-). We further investigated this reaction path by additional NMR spectroscopic experiments, powder-XRD analysis, and quantum chemical DFT calculations.  相似文献   

16.
Mitzi DB 《Inorganic chemistry》2005,44(10):3755-3761
The crystal structures of two hydrazinium-based germanium(IV) and tin(IV) selenide salts are determined. (N(2)H(5))(4)Ge(2)Se(6) (1) [I4(1)cd, a = 12.708(1) Angstroms, c = 21.955(2) Angstroms, Z = 8] and (N(2)H(4))(3)(N(2)H(5))(4)Sn(2)Se(6) (2) [P, a = 6.6475(6) Angstroms, b = 9.5474(9) Angstroms, c = 9.8830(10) Angstroms, alpha = 94.110(2) degrees, beta = 99.429(2) degrees, gamma = 104.141(2) degrees, Z = 1] each consist of anionic dimers of edge-sharing metal selenide tetrahedra, M(2)Se(6)(4-) (M = Ge or Sn), separated by hydrazinium cations and, for 2, additional neutral hydrazine molecules. Substantial hydrogen bonding exists among the hydrazine/hydrazinium molecules as well as between the hydrazinium cations and the selenide anions. Whereas the previously reported tin(IV) sulfide system, (N(2)H(5))(4)Sn(2)S(6), decomposes cleanly to microcrystalline SnS(2) when heated to 200 degrees C in an inert atmosphere, higher temperatures (>300 degrees C) are required to dissociate selenium from 1 and 2 for the analogous preparations of single-phase metal selenides. The metal chalcogenide salts are highly soluble in hydrazine, as well as in a variety of amines and DMSO, highlighting the potential usefulness of these compounds as precursors for the solution deposition of the corresponding metal chalcogenide films.  相似文献   

17.
The aim of this study is to investigate the possible use of a 1,2-dimethylimidazolium ionic liquid,2,2-bis((1,2-dimethylimidazolium)methyl)propane-1,3-diol hexafluorophosphate(1),as an adsorbent to selectively remove aromatic heterocyclic sulfur compounds from model fuels.The result indicates that adsorbent 1 is insoluble in model fuels.The spent IL saturated sulfur compounds could be regenerated by a water dilution process.The influence of extraction time or temperature as well as the molar ratio of 1 to aromatic heterocyclic sulfur compound was also studied.  相似文献   

18.
Association of 1,4-dinitrobenzene (1,4-DNB) dianion (DA) with 1-butyl-3-methylimidazolium (bmim+) and 1-butyl-2,3-dimethylimidazolium (bdmim+) cations, whose salts are widely used as ionic liquids, was studied by cyclic voltammetry. In 0.1 M solution of Bu4NClO4 in DMF, associates with the number of coordinated cations up to four in the case of bmim+ and two in the case of bdmim+ are formed. The partial stability constant values for the associates of bmim+ are 40, 20, 5, and 3.2 L mol−1, of bdmim+ − 24 and 1.9 L mol−1. The higher number of coordinated bmim+ cations is attributed to the formation of, along with ion pairs, hydrogen bonds between 1,4-DNB DA and bmim+ due to the labile hydrogen atom at position 2 of the imidazole ring, in contrast to bdmim+, which is involved only into the ion-pair interactions.  相似文献   

19.
α,α′-Dichloroazo compounds 6 react with Lewis acid to furnish 1-(chloroalkyl)-1-aza-2-azoniaallene salts 4. The cations 4 react with acetylenes, isothiocyanates, isocyanates, and carbodiimides under [3+2]-cycloaddition. The cycloadducts undergo consecutive reactions, e.g., [1,2]-shifts of alkyl groups. The newly synthesized products were evaluated for their anti-HIV-1 and anti-HIV-2 activity in MT-4 cells.  相似文献   

20.
Oxidative addition of different imidazolium cations to zerovalent group 10 metals, to afford heterocyclic carbene complexes, has been investigated by both density functional theory (DFT) and experimental studies. The theoretical analysis shows that addition of imidazoliums to Pt(0) and Ni(0) is more exothermic than to Pd(0), and Ni(0) is predicted to react with a much lower barrier than either Pt(0) or Pd(0). Strongly basic supporting ligands on the metal, as well as cis-chelating ligands, increase the exothermicity of the reaction and also lower the activation barrier. The addition of 2-H imidazoliums is easier and more exothermic than addition of 2-alkylimidazoliums, and a halo-imidazolium is expected to further lower the barrier to oxidative addition and increase the exothermicity. The DFT results show that all three of the metals should be able to oxidatively add imidazolium cations under appropriate conditions. Experimental studies confirmed that oxidative addition is possible, and a number of Pt- and Pd-carbene complexes were prepared via oxidative addition of imidazolium salts to M(0) precursors. Most significantly, oxidative addition of 2-H azolium salts was found to readily occur, and the reaction of 1,3-dimethylimidazolium tetrafluoroborate with Pt(PPh(3))(2) and Pt(PCy(3))(2) affords [PtH(dmiy)(PPh(3))(2)]BF(4) (10) and [PtH(dmiy)(PCy(3))(2)]BF(4) (11), while reaction between 3,4-dimethylthiazolium tetrafluoroborate and Pt(PCy(3))(2) yields [PtH(dmty)(PCy(3))(2)]BF(4) (12) (dmiy = 1,3-dimethylimidazolin-2-ylidene, dmty = 3,4-dimethylthiazolin-2-ylidene). Addition of 2-iodo-1,3,4,5-tetramethylimidazolium tetrafluoroborate to Pt(PPh(3))(4) or Pd(dcype)(dba) yields [PtI(tmiy)(PPh(3))(2)]BF(4) (9) and [PdI(tmiy)(dcype)]BF(4) (14), respectively (tmiy = 1,3,4,5-tetramethylimidazolin-2-ylidene, dcype = 1,3-bis(dicyclohexylphosphino)ethane)). X-ray crystal structures are reported for complexes 9 and 11 (cis and trans). These studies clearly show for the first time that oxidative addition of imidazolium and thiazolium cations is possible, and the results are discussed in terms of the ramifications for catalysis in imidazolium-based ionic liquids with both carbene-based and non-carbene-based complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号