首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
A catalytic spectrophotometric method for the determination of traces of copper(II) is proposed. 3-Methyl-2-benzothiazolinone hydrazone (MBTH) is oxidized by hydrogen peroxide to form a yellowish-brown compound. The reaction is accelerated by trace amounts of copper(II), and can be followed by measuring the increase in the absorbance at 390 nm. Since the absorbance at 40 min from the reaction start increases with an increase in the copper(II) concentration, the absorbance value is used as a parameter for copper(II) determination. Under the optimum experimental conditions (8.4 x 10(-3) mol dm(-3) MBTH, 0.7 mol dm(-3) hydrogen peroxide, pH 5.2, 35 degrees C), copper(II) can be determined in the range 0-50 microg dm(-3). The relative standard deviations are 6.9, 3.5, 2.7% for 2, 20 and 40 microg dm(-3), respectively. The detection limit of this method (3sigma) is 0.27 microg dm(-3). It was successfully applied to a determination of copper(II) in river water, tap water and ground-water samples. According to the results of a kinetic study, a mechanism is proposed which leads to the following rate equation: R0(cat) = kK1K2[MBTH][H2O2][Cu(II)]0/{(1 + K2[H2O2])[H+]}.  相似文献   

2.
A simple spectrophotometric method is presented for the rapid determination of copper at a trace level using 2,5-dimercapto-1,3,4-thiadiazole (DMTD) as a new spectrophotometric reagent. The method is based on the reaction of non-absorbent DMTD in a slightly acidic (0.002-0.014 mol dm(-3) sulfuric acid) aqueous solution with copper(II) to produce a highly absorbent greenish-yellow chelate product that has an absorption maximum at 390 nm. The reaction is instantaneous and the absorbance remains stable for 24 h. The average molar absorption coefficient and Sandell's sensitivity were found to be 5.65 x 10(4) dm3 mol(-1) cm(-1) and 10 ng cm(-2) of CuII, respectively. Linear calibration graphs were obtained for 0.1-20 microg cm(-3) of CuII; the stoichiometric composition of the chelate is 1:2 (Cu:DMTD). A large excess of over 50 cations, anions and complexing agents (e.g. tartrate, oxalate, citrate, phosphate, thiourea, SCN-) do not interfere in the determination. The method was successfully used for the determination of copper in several Standard Reference Materials as well as in some environmental water samples, biological samples, soil samples and solutions containing both copper(I) and copper(II) and complex synthetic mixtures. The method has high precision and accuracy (s = +/-0.01 for 0.5 microg cm(-1)).  相似文献   

3.
A novel on-line oxidation method of ultra-trace Cr(III) dissolved in natural water has been developed using a flow electrolysis cell. This method was successfully applied to the determination of the total Cr concentration by flow injection-solid phase spectrophotometry using diphenylcarbazide as a coloring agent. With the applied potential of 1.35 V (vs. Ag/AgCl) and the flow rate of 0.80 cm(3) min(-1), Cr(III) was quantitatively oxidized to Cr(VI) at room temperature. The total Cr concentration of sub-microg dm(-3) in 3 - 4 samples could be determined within 1 h using an aqueous sample volume of 7.1 cm(3). The analytical values of the total Cr concentration in natural water were in good agreement with those obtained by ICP-MS. The detection limit of the proposed method was 0.014 microg dm(-3) (3sigma, n = 7). This method could be applied to the specific determination of Cr(III) and Cr(VI) in river water samples.  相似文献   

4.
A simple and rapid spectrophotometric method for the determination of oxalate ion was established by the fading of a colored complex between N,N'-diethyl-N,N'-[[4,4'-dihydroxy-1,1'-binaphthalene]-3,3'-diyl]bisbenzamide and copper(II). Beer's law was obeyed in the concentration range of 0.1 - 2.0 microg cm(-3) for oxalate ion, with an effective molar absorptivity at 533 nm and the relative standard deviation being 8.0 x 10(3) dm(3) mol(-1) cm(-1) and 1.0% (n = 5), respectively. This proposed method has excellent reproducibility, and was applied to recovery tests of oxalate ion in tap water and human urine; the results were satisfactory. This is suggested that the method is based on the reaction of copper(II) to copper(I) with oxalate ion.  相似文献   

5.
The spectrophotometric determination of Cu(II) with an anthraquinone derivative (Alizarin Red S) has been investigated. The experimental conditions, such as the pH of the sample and concentration of ligand, were optimized. This method is simple and sensitive for determination of Cu(II) ion. The interfering effects of diverse ions were investigated. Copper ion was determined by measuring the absorbance of the Cu(II)-ARS complex at 510 nm. Beer's law was obeyed over the concentration range of 0.011 - 0.320 mmol dm(-3) and the detection limit (S/N = 3) was 0.038 microg cm(-3). The relative standard deviation at 20 microg cm(-3) was 1.02% (n = 5). The method was applied for real samples.  相似文献   

6.
Benzildithiosemicarbazone (BDTSC) is proposed as a sensitive and selective analytical reagent for the extractive spectrophotometric determination of copper(II). BDTSC reacts with copper(II) in the pH range 1.0-7.0 to form a yellowish complex. Beer's law is obeyed in the concentration range 0.5-0.4 microg cm(-3). The yellowish Cu(II)-BDTSC complex in chloroform shows a maximum absorbance at 380 nm, with molar absorptivity and Sandell's sensitivity values of 1.63 x 10(4) dm3 mol(-1) cm(-1) and 0.00389 microg cm(-2), respectively. A repetition of the method is checked by finding the relative standard deviation (RSD) (n = 10), which is 0.6%. The composition of the Cu(II)-BDTSC complex is established as 1:1 by slope analysis, molar ratio and Asmus' methods. An excellent linearity with a correlation coefficient value of 0.98 is obtained for the Cu(II)-BDTSC complex. The instability constant of the complex calculated from Edmond and Birnbaum's method is 7.70 x 10(-4) and that of Asmus' method is 7.66 x 10(-4), at room temperature. The method is successfully employed for the determination copper(II) in pharmaceutical and environmental samples. The reliability of the method is assured by analyzing the standard alloys (BCS 5g, 10g, 19e, 78, 32a, 207 and 179) and by inter-comparison of experimental values, using an atomic absorption spectrometer.  相似文献   

7.
A multi-element preconcentration-separation technique for heavy metal ions in environmental samples has been established. The procedure is based on coprecipitation of gold(III), bismuth(III), cobalt(II), chromium(III), iron(III), manganese(II), nickel(II), lead(II), thorium(IV) and uranium(VI) ions by the aid of Cu(II)-9-phenyl-3-fluorone precipitate. The Cu(II)-9-phenyl-3-fluorone precipitate was dissolved by the addition 1.0 mL of concentrated HNO3 and then the solution was completed to 5 mL with distilled water. Iron, lead, cobalt, chromium, manganese and nickel levels in the final solution were determined by flame atomic absorption spectrometer, while gold, bismuth, uranium and thorium were determined by inductively coupled plasma mass spectrometer. The optimal conditions are pH 7, amounts of 9-phenyl-3-fluorone: 5 mg and amounts of Cu(II): 1 mg. The effects of concomitant ions as matrix were also examined. The preconcentration factor was 30. Gold(III), bismuth(III), chromium(III), iron(III), lead(II) and thorium(IV) were quantitatively recovered from the real samples. The detection limits for the analyte elements based on 3 sigma (n = 15) were in the range of 0.05-12.9 μg L−1. The validation of the presented procedure was checked by the analysis of two certified reference materials (Montana I Soil (NIST-SRM 2710) and Lake Sediment (IAEA-SL-1)). The procedure was successfully applied to some environmental samples including water and sediments.  相似文献   

8.
6-Chloro-3-hydroxy-2-(5'-methylfuryl)-4H-chromene-4-one (CHMFC) has been used as an analytical reagent for the spectrophotometric determination of molybdenum. Molybdenum(VI) in the presence of several cations, anions and complexing agents forms a yellow 1:2 complex with CHMFC. The complex is quantitatively extractable into 1,2-dichloroethane from 1 mol dm(-3) acetic acid medium and is stable for more than 6 h. The complex shows an absorption maximum at 438 nm with a molar absorptivity of 5.36 x 10(4) dm3 mol(-1) cm(-1) and Sandell's sensitivity equal to 0.0017 microg Mo cm(-2). The method obeys Beer's law up to 1.9 microg Mo ml(-1). The relative standard deviations are 0.2% for solutions and 0.5-1.5% for solid samples. The method is simple, selective, precise and rapid, and has been satisfactorily applied to the micro determination of molybdenum in various synthetic and standard samples.  相似文献   

9.
A simple and sensitive method for the separation and preconcentration of gold, palladium and platinum has been established prior to their atomic absorption spectrometric determinations. Analytes from 0.5 mol dm(-3) KI in a 2 mol dm(-3) HCl solution were recovered using an Amberlite XAD-7 column as halogeno complexes. The effects of some analytical parameters, including reagent amounts, sample volume and flow rates, on the quantitative recoveries of gold, palladium and platinum were investigated. The influences of some diverse ions were also studied. The proposed method has been applied for the preconcentration and separation of analytes from pure copper and anodic slime samples with satisfactory results (recoveries > 95%, relative standard deviations < 9.0%, relative error < or = 5%).  相似文献   

10.
A sensitive and simple method for the determination of trace amounts of indium in water samples by graphite furnace atomic absorption spectrometry (GFAAS) after coprecipitation with chitosan was investigated. Indium was quantitatively preconcentrated from water samples by coprecipitation with chitosan at pH 7.0-9.0. The coprecipitant was easily dissolved with acetic acid, and indium in the resulting solution was determined by GFAAS. The addition of lanthanum as a chemical modifier was more effective for the atomic absorbance of indium. The detection limit (S/N > or = 3) for indium was 0.04 microg dm(-3), and the relative standard deviations (n = 5) were 3.5-4.5% at 1.0 microg/100 cm3. The results obtained in this study indicate that the proposed method can be successfully applied to the determination of trace indium in water samples.  相似文献   

11.
Scancar J  Milacic R 《The Analyst》2002,127(5):629-633
A new analytical procedure using an anion-exchange separation support based on convective-interaction media (CIM) was developed for the speciation of chromium. The separation of Cr(VI) was performed on a weak anion-exchange CIM diethylamine (DEAE) fast-monolithic chromatographic disc. Buffer A (0.005 mol dm(-3) TRIS-HCl, pH 8.0) and buffer B (buffer A plus 3 mol dm(-3) NH4NO3) were employed in the separation procedure. The separated chromium species were determined 'off-line' by ETAAS in 0.5 cm3 fractions. The applicability of the CIM DEAE-ETAAS procedure was investigated for the determination of airborne Cr(VI) at a plasma cutting workplace. Aerosols were collected on polycarbonate membrane filters of 8 and 0.4 microm pore size (inhalable and respirable aerosols). Alkaline extraction of filters in a heated ultrasonic bath was applied to leach chromium. Good repeatability of measurement (+/-3.0%) of the alkaline extracts was obtained for Cr(VI). The LOD (3s) was found to be 0.30 microg m(-3) Cr(VI), when 0.25 m3 of air was collected on the filter. The validation of the procedure was performed by spiking filters with Cr(VI) and by the analysis of the standard reference material CRM 545, Cr(VI) in welding dust loaded on a filter. Good recoveries for spiked samples (101-102%) and good agreement between Cr(VI) found and the reported certified value for CRM 545 were obtained. The extracts were also analysed by the FPLC-ETAAS technique. Good agreement between two techniques (r2 = 0.9978) confirmed the reliability of the CIM DEAE-ETAAS procedure developed. The main advantage of the procedure lies in the speed of the chromatographic separation (chromatographic run completed in 15 min).  相似文献   

12.
4-(N,N-diethylamino)benzaldehyde thiosemicarbazone(DEABT) is proposed as a sensitive and selective analytical reagent for the spectrophotometric determination of palladium(II). The reagent reacts with palladium (II) in a potassium hydrogen phthalate-hydrochloric acid buffer of pH 3.0, to form a yellow complex. Beer's law is obeyed in the concentration range up to 3.60 microgmL(-1). The optimum concentration range for minimum photometric error as determined by Ringbom plot method is 0.36 - 3.24 microg mL(-1). The yellow Pd(II)-DEABT complex shows a maximum absorbance at 408 nm, with molar absorptivity of 3.33 x 10(4) dm3 mol(-1) cm(-1) and Sandell's sensitivity of the complex from Beer's data, for D = 0.001, is 0.0032 microg cm(-2). The composition of the Pd(II)-DEABT complex is found to be 1:2 (M:L). The interference of various cations and anions in the method were studied. The proposed method was successfully used for the determination of Pd(II) in alloys, catalysts, complexes and model mixtures with a fair degree of accuracy.  相似文献   

13.
A method for direct determination of cadmium, chromium, copper and lead in sediments and soil samples by electrothermal atomic absorption spectrometry using Zr, Ir, etylenediamine acetic acid (EDTA), Zr + EDTA, Ir + EDTA, Zr + Ir and Zr + Ir + EDTA as chemical modifiers in 0.5% (v/v) Triton X-100 plus 0.2% (v/v) nitric acid mixture used as diluent was developed. The effects of mass and mass ratio of modifiers on analytes in sample solutions were studied. The optimum masses and mass ratios of modifiers: 20 microg of Zr, 4 microg of Ir, 100 microg of EDTA and 20 microg of Zr + 4 microg of Ir + 100 microg of EDTA, were used to enhance the analyte signals. Pyrolysis and atomization temperatures, atomization and background absorption profiles, characteristic masses, and detection limits of analytes in samples were compared in the presence or absence of a modifier. The detection limits and characteristic masses of analytes in a 0.5% (m/v) dissolved sample (dilution factor of 200 ml g(-1)) obtained with Zr + Ir + EDTA are 8.0 ng g(-1) and 1.2 pg for Cd, 61 ng g(-1) and 4.3 pg for Cr, 32 ng g(-1) and 23 pg for Cu, and 3.4 ng g(-1) and 19 pg for Pb, respectively. The Zr + Ir + EDTA modifier mixture was found to be preferable for the determination of analytes in sediment and soil-certified and standard reference materials. Depending on the sample type, the percent recoveries of analytes were increased from 81 to 103% by using the proposed modifier mixture; the results obtained are in good agreement with the certified values.  相似文献   

14.
Purohit R  Devi S 《Talanta》1991,38(7):753-759
Oxine/formaldehyde/resorcinol and oxine/formaldehyde/hydroquinone resins have been synthesized and their physicochemical properties studied. Conditions were optimized for the preconcentration of copper by batch extraction and column chromatography with the resins. A flow-injection analysis (FIA) manifold was constructed for the determination of copper at ng levels by preconcentration on microcolumns containing the resins, stripping, and atomic-absorption spectrometry. For batch preconcentration a pH of about 2.5-3 was optimal whereas in the FIA system a broader pH range (approximately 2-3.5) could be used. Separations of binary mixtures of Cu(II) with Ni(II) or PB(II) at microg/ml level did not show any cross-contamination. In the FIA, a 2 cm long column and 2 ml/min flow-rate were adequate for quantitative uptake of copper; 50 micro1 of 0.1M hydrochloric acid quantitatively eluted the copper.  相似文献   

15.
The usefulness of coprecipitation with lanthanum phosphate for separation and preconcentration of some heavy metals has been investigated. Although lanthanum phosphate coprecipitates iron(III) and lead quantitatively at pH 2.3, iron(II) can barely be collected at this pH. This coprecipitation technique was applicable to the separation and preconcentration of iron(III) before inductively coupled plasma atomic-emission spectrometric (ICP-AES) determination; the recoveries of iron(III) and iron(II) from spiked water samples were 103-105% and 0.2-0.7%, respectively. The coprecipitation was also useful for separation of 20 microg lead from 100 mL of an aqueous solution that also contained 1-100 mg iron. Coprecipitation of iron was substantially suppressed by addition of ascorbic acid, which enabled recovery of 97-103% of lead added to the solution, bringing the recovery to within 1.6-5.0% of the relative standard deviations. Lanthanum phosphate can also coprecipitate cadmium and indium quantitatively, although chromium(III), cobalt, and nickel and large amounts of sodium, potassium, magnesium, and calcium are barely coprecipitated at pH approximately/= 3.  相似文献   

16.
A rapid and sensitive extractive spectrophotometric method has been developed for the determination of palladium(II) in synthetic mixtures and hydrogenation catalysts using pyridoxal-4-phenyl-3-thiosemicarbazone (PPT) as an analytical reagent. The reagent forms a red-color complex with the metal at pH 3.0, which is extracted into benzene. The absorbance is measured at 460 nm. The method adheres to Beer's law up to a concentration range of 0.4-6.4 microg cm(-3). The molar absorptivity and Sandell's sensitivity are 2.20 x 10(4) dm3 mol(-1) cm(-1) and 4.85 x 10(-3) microg cm(-2), respectively. The correlation coefficient of the Pd(II)-PPT complex is 0.99, which indicates an excellent linearity between two variables. The detection limit of this method is 0.05 microg cm(-3). The instability constant of the Pd(II)-PPT complex calculated from Edmond and Birnbaum's method is 2.90 x 10(-5) and that of Asmus' method is 2.80 x 10(-5) at room temperature. The concurrent repetition of the method is checked and the relative standard deviation (RSD) (n = 5) was derived as 1.84 percent. The present method was applied to the determination of palladium(II) in synthetic mixtures and hydrogenation catalysts. The results were compared by employing an atomic-absorption spectrometer.  相似文献   

17.
A new catalytic method for the determination of silver(I) was developed based on a metal exchange reaction between ethylenediaminetetraacetatomercury(II) (Hg(II)-EDTA) in the aqueous phase and bis(diethyldithiocarbamato)copper(II) (Cu(II)-DDTC) in the organic phase. This exchange reaction (Cu(II)-DDTC(org)+Hg(II)-EDTA-->Hg(II)-DDTC(org)+Cu(II)-EDTA, where org denotes the organic phase) was observed to proceed slowly and the Cu(II)-DDTC complex transferred quantitatively to Hg(II)-complex in the organic phase in the equilibrium state. In this system, silver(I) acts as the catalyst and can be determined by measuring the decrease in the absorbance of the Cu(II)-DDTC complex (lambda(max)=435 nm). The reaction was applied to the extractive flow injection analysis of silver(I). The present method allows the determination of silver(I) at 10(-7) mol dm(-3) level with the sampling frequency of 30 h(-1). The relative standard deviation of 0.28% (n=10) was obtained at 4.0x10(-7) mol dm(-3) of silver(I).  相似文献   

18.
The catalytic effect of manganese (II) on the oxidation of the azo dye 3-Methyl-6-(2-hydroxyethoxy)-2-[2-methoxy-4-N (N, N diethylamino) phenylazo] benzothiazolium methylsulphate, with potassium periodate in the presence of 1,10-phenanthroline in weakly acidic media was studied. The reaction was followed spectrophotometrically by measuring the decrease in the absorbance of the dye at 560 nm. Under the optimum conditions (4 x 10(-5) mol dm(-3) azo dye, 4 x 10(-4) mol dm(-3) potassium periodate, 1 x 10(-4) mol dm(-3) 1,10-phenanthroline, 0.1 mol dm(-3) buffer--pH 3.0, 70 degrees C, 8 min) manganese (II) in the range 0.1-5 ng cm(-3) could be determined by the fixed-time method with a detection limit of 0.035 ng cm(-3). The developed method is highly sensitive, selective, and simple. The method was applied successfully to the determination of total manganese in some medicinal plants and to analyse their infusions for trace amounts of total manganese and free manganese (II) ions without separation.  相似文献   

19.
The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L−1 HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 μg L−1 for aqueous samples and in the range of 2.5-9.4 ng g−1 for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results.  相似文献   

20.
The applicability of an anion-exchange fast protein liquid chromatographic-electrothermal atomic absorption spectrometric procedure (FPLC-ETAAS) was investigated for the determination of Cr(VI) in welding fumes after alkaline extraction of aerosols loaded on filters. Gas tungsten arc welding (GTAW) of stainless steel was applied. Samples of welding fumes were collected during regular welding on polycarbonate membrane filters of 8 microm and 0.4 microm pore size (inhalable and respirable aerosols). Alkaline extraction (2% NaOH-3% Na2CO3) of filters in a heated ultrasonic bath was applied to leach Cr from the airborne particulate matter. 0.5 cm3 of sample extract was then injected onto an anion-exchange FPLC column. Tris-HCl buffer (0.005 mol dm(-3), pH 8.0) and the same buffer with NaCl (0.5 mol dm(-3)) were employed in gradient elution (15 min, flow rate 1 cm3 min(-1)). The separated Cr species were determined "off line" by ETAAS in 0.5 cm3 fractions. Cr(VI) was reproducibly and quantitatively eluted from 12.0 to 13.0 min with a maximum peak at 12.5 min. Good repeatability of measurement (+/-3.0%) of alkaline extracts was obtained for Cr(VI). The LOD (3s) was found to be 0.035 microg m(-3) Cr(VI), when 2 m3 of aerosols were collected on the filter. Validation of the procedure was performed by spiking alkaline extracts and by the analysis of standard reference material CRM 545, Cr(VI) in welding dust loaded on a filter. The technique was successfully applied for the determination of Cr(VI) in welding fumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号