首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Upon addition of Tb3+ to 16 nucleotides and homopolynucleotides, all of them showed a characteristic green emission from Tb3+, but with much different intensity, upon excitation in the aromatic region of bases. The result suggested that nucleotides with at least one carbonyl group in nucleotide bases are better enhancers to the fluorescence of Tb3+. The complexes of ATP, GDP and GTP with Tb3+ are synthesized as two types of models. Guanine type nucleotides with one carbonyl group in the bases are the best enhancers, while adenine type nucleotides with no carbonyl group in the bases are poorest enhancers to the fluorescence of Tb3+. Comparing the IR spectra of ATP, GTP, GDP and their Tb3+ complexes suggested that C-6 carbonyl group in GTP and GDP may be involved in complex formation, which may be responsible for the effective energy transfer. This is further supported by comparing the UV spectra of ATP, Poly(A), GTP, and Poly(G) with their Tb3+ complexes in water solution.  相似文献   

2.
Quantum-chemical calculations of ground and excited states for membrane fluorescent probe 4-dimethylaminochalcone (DMAC) in vacuum were performed. Optimized geometries and dipole moments for lowest-lying singlet and triplet states were obtained. The nature of these electronic transitions and the relaxation path in the excited states were determined; changes in geometry and charge distribution were assessed. It was shown that in vacuum the lowest existed level is of (n, π*) nature, and the closest to it is the level of (π, π*) nature; the energy gap between them is narrow. This led to an effective (1)(π, π*) →(1)(n, π*) relaxation. After photoexcitation the molecule undergoes significant transformations, including changes in bond orders, pyramidalization angle of the dimethylamino group, and planarity of the molecule. Its dipole moment rises from 5.5 Debye in the ground state to 17.1 Debye in the (1)(π, π*) state, and then falls to 2 Debye in the (1)(n, π*) state. The excited (1)(n, π*) state is a short living state; it has a high probability of intersystem crossing into the (3)(π, π*) triplet state. This relaxation path explains the low quantum yield of DMAC fluorescence in non-polar media. It is possible that (3)(π, π*) is responsible for observed DMAC phosphorescence.  相似文献   

3.
The electronic structures of three dinuclear iron complexes were determined with the DFT method. The complexes contain a {Fe(NO)2}9 unit and thiolate, nitrosyl, carbonyl and amine ligands at the second iron atom. The two iron atoms are bridged by thiolate ligands. In the lowest energy states of these complexes, the iron atoms possess spin S = 1, 3/2 or 5/2, depending on the coordinated ligands and their mutual arrangement. Nitrosyl is coordinated as NO antiferromagnetically coupled to iron, and the two iron units are antiferromagnetically coupled to each other.  相似文献   

4.
The kinetics of base-catalyzed hydrolysis of 7-dimethylamino-4-methyl-2H-chromen-2-one (DMAC) and 7-diethylamino-4-methyl-2H-chromen-2-one (DEAC) in binary water-methanol and water-acetone mixtures were studied in the temperature range from 288 to 313 K. The activation and thermodynamic parameters of these reactions were evaluated and discussed. The change in the activation energy in going from water to aqueous methanol and aqueous acetone was estimated from the kinetic data. Base-catalyzed hydrolysis of DMAC) and DEAC in aqueous methanol and aqueous acetone follows the first-order kinetic law with respect to hydroxide ion, k obs= k 2[OH]. The hydrolysis rate constants of DMAC and DEAC decrease as the fraction of methanol or acetone in the binary mixture rises, which is due to destabilization of OH? ion. The high negative entropies of activation support the proposed mechanism involving formation of an intermediate complex and reflect rigidity and stability of the latter. Opening of the pyran ring in the intermediate complex is the rate-determining step.  相似文献   

5.
Selective metal ion detection is highly desired in fluorometric analysis. In the current study a curcumin-based fluorescence-on probe/[(2E,6E)-2,6-bis(4-(dimethylamino) benzylidene) cyclohexanone]/probe was designed for the removal of one of the most toxic heavy metal ion i.e. Hg2+. The structure of the probe was confirmed by FTIR and 1H NMR spectroscopic analysis displaying distinctive peaks. The complex formation between probe and Hg2+ ion was also studied by density functional theory to support the experimental results. Chelation enhanced fluorescence was observed upon interaction with Hg2+ ion. Different parameters like pH, effect of mercury ion concentration, contact time, interference study and effect of probe concentration on the fluorescence enhancement were also investigated. A rapid response was detected for Hg2+ ion with limit of detection and quantification as 2.7 nM and 3 nM respectively with association constant of 1 × 1011 M?2. The probe displayed maximum fluorescence intensity at physiological pH. The results showed that the synthesized probe can be employed as an excellent probe for the detection and quantification of Hg2+ ions in aqueous samples with high selectivity and sensitivity due to its higher binding energy and larger charge transferring ability.  相似文献   

6.
The geometric structures, infrared spectra and hydrogen bond binding energies of the various hydrogen‐bonded Res?‐water complexes in states S0 and S1 have been calculated using the density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods, respectively. Based on the changes of the hydrogen bond lengths and binding energies as well as the spectral shifts of the vibrational mode of the hydroxyl groups, it is demonstrated that hydrogen bonds HB‐II, HB‐III and HB‐IV are strengthened while hydrogen bond HB‐I is weakened in the four singly hydrogen‐bonded Res?‐Water complexes upon photoexcitation. When the four hydrogen bonds are formed simultaneously between one resorufin anion and four water molecules in the Res?‐4Water complex, all the hydrogen bonds are weakened in both the ground and excited states compared with those in the corresponding singly hydrogen‐bonded Res?‐Water complexes. Furthermore, in complex Res?‐4Water, hydrogen bonds HB‐II and HB‐IV are strengthened while hydrogen bonds HB‐I and HB‐III are weakened after the electronic excitation. The hydrogen bond strengthening and weakening in the various hydrogen‐bonded Res?‐water complexes should be due to the redistribution of the charges among the four heteroatoms (O1‐3 and N1) within the resorufin molecule upon the optical excitation.  相似文献   

7.
An effective 15N- and deuterium (D)-labeled 2,6-bis(oxazolin-2-yl)pyridine (pybox)-La complex based probe ionization method that produces a distinct isotopic shift was developed. The distinct isotopic shift was detected by using the newly synthesized 15N-D-labeled pybox complexes. Moreover, O-[3-(tetramethylpybox)-propyl]-hydroxylamine (oxime-TMpybox) was prepared for attachment to the carbonyl group of the target molecule. Distinct isotopic shifts and multiple charged ions were detected for various compounds having amino, thiol, carboxyl, and carbonyl groups and fullerenes, using the TMpybox ionic probe series in cold-spray ionization mass spectrometry.  相似文献   

8.
Copolymer of styrene with 4-oxe-4(P-hydroxyl phenylamino) but-2-enoic acid (PSHPEA) and its luminescent lanthanide complexes Ln-PSHPEA (Ln = La, Eu, Tb and Y) were synthesized and characterized by means of elemental analysis, FT-IR, thermogravimetric analysis and fluorescence determination. The results showed that the carboxylic groups on the chain of the copolymer acted as bidentate ligands coordinated to lanthanide ions, but the amido carbonyl groups, amino N and hydroxy groups had not taken part in coordination; the coordination degree of -COO/Ln3+ which determined the content of metal ions in the macromolecular complexes, was closely dependent on both the pH value of the solution and the molar ratio of St to 4-oxe-4(P-hydroxyl phenylamino) but-2-enoic acid in the polymer ligand. The fluorescence determination showed that the complexes exhibited characteristic fluorescence with comparatively high brightness and good mono-chromaticity. Typical relationship between emission intensity and Ln3+ ions content in macromolecular complexes exhibited some extent of fluorescence concentration quenching in our studies. The emission intensity of Tb-PSHPEA complexes was much stronger than that of Eu-PSHPEA complexes, which was attributed to especial effectivity in transferring energy from the lowest triplet energy level of the ligand onto the excited state (5D0) of Tb3+ ion than that (5D4) of Eu3+ ion.  相似文献   

9.
We have investigated the photophysical and photochemical features of a luminescent heteroleptic RuII‐polypyridyl probe and of its corresponding RuII‐CuII dinuclear complex formed upon the analyte binding through extensive density functional theory (DFT) and time‐dependent DFT (TD‐DFT) calculations. The molecular probe contains the tailored imidazo[4,5‐f]‐1,10‐phenanthroline (IIP) ligand for simultaneously binding the RuII core and the target metal ion in aqueous solution. We have rationalized the static photoluminescence quenching observed upon the CuII coordination, on the grounds of distinct excited state deactivation mechanisms which are absent in the free RuII complex probe. Additionally, the emission quenching found upon increasing the solution pH has also been investigated. When coordinated IIP deprotonates, the nature of the lowest excited state of its complex changes from 3MLCT to 3LLCT/3IL. The strong base‐induced emission quenching can be understood in terms of both the energy‐gap law, since the 3LLCT/3IL states lie at a significantly lower energy than the 3MLCT state increasing the contribution of non‐radiative mechanisms, and the expected slower radiative rates from such 3LLCT/3IL states. After CuII binding, the lowest triplet excited state is similar to the analyte‐free probe in both energy and electronic nature. However, Cu‐centered non‐radiative excited states, populated after photoinduced electron transfer and intersystem crossing processes, are responsible for the population drainage of the emissive state.  相似文献   

10.
An intramolecular charge transfer fluorescence probe of 4′-N,N-dimethylamino-4-amino-chalcone(DMAC) exhibits characteristics clearly correlated with the polarity of solvents. The interaction of this fluorescence probe with calf thymus DNA has been investigated. Generally, DMAC bound to DNA shows marked changes in fluorescence and absorbance properties compared to the spectral characteristics of the free form in solution phase. In the presence of DNA the fluorescence intensity of DMAC is greatly increased with a large bathochromic shift of excitation and emission wavelengths. A hypochromism in absorption spectrum was also observed. The absorption and fluorescence spectra, salt concentration effect, and KI quenching experiments demonstrate that DMAC molecule as an intercalator is inserted into the base-stacking domain of DNA double helix, and the interaction of the nucleobases with DMAC molecule causes the increase of fluorescence intensity and hypochromism in absorption spectrum. The intrinsic binding constant and the binding site number were estimated to be 7.04 × 106 mol L−1 in base pairs and 0.065, respectively. The I/I0 vs DNA concentration plot shows a linear range covering 1.98 × 10−6 to 2.08 × 10−4 mol L−1 in base pairs which can be used for determining DNA with a detection limit of 6.0 × 10−7 mol L−1 in base pairs (0.6 μg ml−1).  相似文献   

11.
The structures of donor-acceptor complexes of syn-benzoyl azide, its 2-methyl- and 2,6-dimethyl-substituted derivatives with BF3, AlCl3, and SbCl5, and the corresponding transition states of the rearrangement into isocyanates were studied by the PBE/TZ2P method in the framework of the density functional theory (DFT). The complexes are formed at the oxygen and nitrogen atoms of the acyl azide group and have the composition 1: 1 or 1: 2 depending on the Lewis acid (L) structure. The complexes at the oxygen atom are more stable; the most stable complexes are formed by the reactions of acyl azides with AlCl3. Complex formation with Lewis acids decreases the activation energy of the transformation of acyl azides into isocyanates owing to the +M effect and stabilization of the Ar-C(O-L(1?))=N(1)-N(2)(1+)≡N(3) mesomeric form. The activation energy decreases with an increase in the number of ortho-methyl substituents in benzoyl azide due to the +I effect of the phenyl group. The turn of the phenyl ring at almost 90° with respect to the CON3 group is needed for the rearrangement to occur, and the energy necessary for this process is ~8 kcal mol?1.  相似文献   

12.
Microwave spectra of CHO-COOH and CHO-COOD are reported. The molecule has a planar equilibrium conformation with the two carbonyl groups trans to each other. A weak five-member intramolecular hydrogen bond is formed between the hydroxyl proton of the carboxyl group and the oxygen atom of the carbonyl group thus stabilizing the trans planar form. Other conformations having a statistical weight of 1 (cis and trans) are at least 1.3 kcal mol?1 less stable, and rotamers with a statistical weight of 2 (e.g., gauche and skew) have at least 1.7 kcal mol?1 higher energy. Four vibrationally excited states of CHO-COOH have been analyzed and relative intensity measurements yielded 167 ± 12 cm?1 for the C-C torsional mode and 288 ± 26 cm?1 for the lowest in-plane bending mode. The dipole moment was determined to be μa = 1.85 ± 0.03 D, μb = 0.20 ± 0.10 D, and μtot = 1.86 ± 0.04 D. A seven-parameter centrifugal distortion analysis has been carried out for the ground vibrational state of CHO-COOD and for the ground and three vibrationally excited states of CHO-COOH.  相似文献   

13.
The effect of intermolecular hydrogen bonding on the photophysical properties of N‐methyl‐1,8‐naphthalimide ( 2 ) has been investigated by time‐dependent density functional theory (TD‐DFT) method. The UV and IR spectra of 2 monomer and its hydrogen‐bonded complexes formed with 2,2,2‐trifluoroethanol (TFE) 2 +TFE and 2 +2TFE have been calculated, which confirm the presence of intermolecular hydrogen bonding interactions between the carbonyl groups of the aromatic imide and the hydroxyl group of the polyfluorinated alcohol. The absorption and fluorescence intensities going from 2 monomer via hydrogen‐bonded complex 2 +TFE to 2 +2TFE were found to be gradually enhanced with the wavelength gradually red‐shifted. The enhancements of the fluorescence intensities from 2 monomer to hydrogen‐bonded complexes 2 +TFE and 2 +2TFE were attributed to the decrease of the intersystem crossing (ISC) efficiency from the first excited singlet state S1 1(ππ*) to the second excited triplet state T2 3(nπ*), whose energy was increased relative to its ground state due to the intermolecular hydrogen bonding interactions.  相似文献   

14.
When water or salts are added, catalytic effects on alkaline hydrolysis of malonic esters in methanol are observed; they are definitely greater than those observed with monoesters. Kinetic data in the presence of salts suggest that ester-M+ complexation phenomena is predominant and prevails over HO-, M+ ionic association. Infrared and Raman spectra of esters in water-alcohol mixtures, with or without added salts, indicate the formation of 1:1 and 1:2 complexes with each carbonyl of the diester and one proton donor molecule as well as with Li+.Ab initio calculations of these diesters and of their complexes allow the estimation of the positive charge density at the carbonyl group carbon as well as the LUMO energy levels; they lead to an interpretation of these entities reactivities according to perturbation theory. Only orbital control of alkaline hydrolysis of esters gives an account of the relative reactivities of mono- and diesters with or without added salts. The only consideration of charges at the carbonyl carbon is, on the other hand, inadequate for justifying all the observed phenomena.  相似文献   

15.
The environmental effects on the structural and photophysical properties of [Ru(L)2(dppz)]2+ complexes (L=bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline, tap=1,4,5,8‐tetraazaphenanthrene; dppz=dipyrido[3,3‐a:2′,3′‐c]phenazine), used as DNA intercalators, have been studied by means of DFT, time‐dependent DFT, and quantum mechanics/molecular mechanics calculations. The electronic characteristics of the low‐lying triplet excited states in water, acetonitrile, and DNA have been investigated to decipher the influence of the environment on the luminescent behavior of this class of molecules. The lowest triplet intra‐ligand (IL) excited state calculated at λ≈800 nm for the three complexes and localized on the dppz ligand is not very sensitive to the environment and is available for electron transfer from a guanine nucleobase. Whereas the lowest triplet metal‐to‐ligand charge‐transfer (3MLCT) states remain localized on the ancillary ligand (tap) in [Ru(tap)2(dppz)]2+, regardless of the environment, their character is drastically modified in the other complexes [Ru(phen)2(dppz)]2+ and [Ru(bpy)2(dppz)]2+ upon going from acetonitrile (MLCTdppz/phen or MLCTdppz/bpy) to water (MLCTdppz) and DNA (MLCTphen and MLCTbpy). The change in the character of the low‐lying 3MLCT states accompanying nuclear relaxation in the excited state controls the emissive properties of the complexes in water, acetonitrile, and DNA. The light‐switching effect has been rationalized on the basis of environment‐induced control of the electronic density distributed in the lowest triplet excited states.  相似文献   

16.
Quenching of electronically excited states of Ln3+* ions generated upon photoexcitation of toluene solutions of Ln(acac)3·H2O (Ln = Tb, Eu) complexes by C60 fullerene at 293 K was detected and investigated. The dependences of quenching efficiency on C60 concentration obtained from data on the decrease in the photoluminescence intensity and Ln3+* lifetimes obey the Stern-Volmer law. Quenching is due to inductive-resonant energy transfer from Ln3+* to C60 fullerene. The bimolecular rate constants for quenching, the overlap integrals of the Ln3+* photoluminescence spectra with the C60 absorption spectra, and the critical energy transfer distances were determined. No sensitized luminescence of C60 in the system studied was detected. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 921–925, June, 2006.  相似文献   

17.
《Chemical physics letters》2002,350(3-4):329-335
Dual fluorescence is observed in water and water-containing solutions of 1H-pyrrolo[3,2-h]quinoline and dipyrido[2,3-a:3,2-i]carbazole. The low energy band is assigned to a product of excited state double proton transfer reaction, occurring in cyclic 1:1 complexes with water. Such complexes constitute only a small fraction of the ground state population. The majority of water complexes are not prone to phototautomerization, but are deactivated via a process that is not efficient in a non-hydrogen-bonded chromophore.  相似文献   

18.
We report the synthesis and characterization of a novel type of nanohoop, consisting of a cycloparaphenylene derivative incorporating a curved heptagon-containing π-extended polycyclic aromatic hydrocarbon (PAH) unit. We demonstrate that this new macrocycle behaves as a supramolecular receptor of curved π-systems such as fullerenes C60 and C70, with remarkably large binding constants (ca. 107 M−1), as estimated by fluorescence measurements. Nanosecond and femtosecond spectroscopic analysis show that these host-guest complexes are capable of quasi-instantaneous charge separation upon photoexcitation, due to the ultrafast charge transfer from the macrocycle to the complexed fullerene. These results demonstrate saddle-shaped PAHs with dibenzocycloheptatrienone motifs as structural components for new macrocycles displaying molecular receptor abilities and versatile photochemical responses with promising electron-donor properties in host-guest complexes.  相似文献   

19.
We report here porphodilactol derivatives and their corresponding metal complexes. These systems show promise as “all-in-one” phototheranostics and are predicated on a design strategy that involves controlling the relationship between intersystem crossing (ISC) and photothermal conversion efficiency following photoexcitation. The requisite balance was achieved by tuning the aromaticity of these porphyrinoid derivatives and forming complexes with one of two lanthanide cations, namely Gd3+ and Lu3+. The net result led to a metalloporphodilactol system, Gd-trans-2, with seemingly optimal ISC efficiency, photothermal conversion efficiency and fluorescence properties, as well as good chemical stability. Encapsulation of Gd-trans-2 within mesoporous silica nanoparticles (MSN) allowed its evaluation for tumour diagnosis and therapy. It was found to be effective as an “all-in-one” phototheranostic that allowed for NIR fluorescence/photoacoustic dual-modal imaging while providing an excellent combined PTT/PDT therapeutic efficacy in vitro and in vivo in 4T1-tumour-bearing mice.

We report here porphodilactol derivatives and their corresponding metal complexes as “all-in-one” phototheranostics by controlling the relationship between intersystem crossing (ISC) and photothermal conversion efficiency following photoexcitation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号