首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The technique of Electron Spin Resonance (ESR) is shown to be useful in the study of dynamics of solid polymer electrolytes (SPE). Through the ESR of the nitroxide radical (2,2,6,6-tetramethyl-1-piperidine-1-oxyl; TEMPO) dispersed in the SPE PEG46LiClO4 temperature dependence of correlation time is found. The glass transition temperature Tg is estimated to be −51 °C from the measurement of T50G, the temperature at which the extrema separation 2AZZ becomes 50G and is found to be close to that measured using DSC (−51.7 °C). Tg for pure PEG-2000, which could not be measured from DSC because of its high crystallinity, is determined to be −72 °C by spin probe ESR. Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Chennai, India, Nov. 28–30, 2003.  相似文献   

2.
X- and W-band EPR spectra, at room and low temperatures, are reported for nitroxide spin labels attached to cysteine residues selectively introduced into two proteins, the DNase domain of colicin-E9 and its immunity protein, Im9. The dynamics of each site of attachment on the individual proteins and in the tight DNase-Im9 complex have been analysed by computer simulations of the spectra using a model of Brownian dynamics trajectories for the spin label and protein. Ordering potentials have been introduced to describe mobility of labels restricted by the protein domain. Label mobility varies with position from completely immobilised, to motionally restricted and to freely rotating. Bi-modal dynamics of the spin label have been observed for several sites. We show that W-band spectra are particularly useful for detection of anisotropy of spin label motion. On complex formation significant changes are observed in the dynamics of labels at the binding interface region. This work reveals multi-frequency EPR as a sensitive and valuable tool for detecting conformational changes in protein structure and dynamics especially in protein-protein complexes.  相似文献   

3.
A general theory of spin diffusion in condensed media is constructed by the method of Zwanzig-Mori projection operators using the superpositional approximation to decouple the many-particle correlation functions. The spin diffusion coefficient is expressed in the form D sp=D tr+D f , where D tr is the contribution associated with translational displacements of the molecules and D f is the contribution caused by intermolecular flip-flop processes. The expression for D tr differs from the well-known Kubo-Green formula for the self-diffusion coefficient D sd in that the integrand contains an additional factor P f (t), which is the probability of the molecular spins not participating in intermolecular flip-flop transitions over the time t. A microscopic expression is obtained for D f in the form of a time integral of the intermolecular dipole-dipole dynamic correlation functions. For liquid-phase polymer system with fairly high molecular mass the condition D spD sd is satisfied. Zh. éksp. Teor. Fiz. 114, 538–554 (August 1998)  相似文献   

4.
EPR investigations using Cu2+ ion as a probe have been performed on supersaturated sucrose solution with percent concentration c = 66 as a function of temperature T, and at room temperature as a function of c. The motionally averaged spectrum of [Cu(H2O)6]2+ was used to monitor the changes in intermolecular interactions that occur as a function of [c, T]. A drastic increase in the line width, symptomatic of increase in the rotational correlation time of [Cu(H2O)6]2+, is observed between 293 and 288 K. The motionally averaged spectrum disappears below 281 K. The motionally averaged spectrum is also absent in the room temperature spectra of the solution with c= 85. Even in the [c, T] range where [Cu(H2O)6]2 is found to be nearly static, these molecules appear to have an orientational fluctuation manifesting in the m 1 dependence of the line width of the parallel component.  相似文献   

5.
High-field EPR on nitroxide spin probes is applied to characterize the dynamics of small additive molecules and surfactants in polymer films obtained from colloidal dispersions. Due to the increased width of the spectra and the smaller influence of hyperfine-dependent relaxation on the spectral lineshape at W band (94 GHz) compared to X band (9.6 GHz), it is possible to measure subnanosecond rotational correlation times for the isotropic motion of the unpolar spin probe TEMPO in the free volume of poly(acrylate) films. Likewise, the anisotropies of the rotational diffusion tensors of a surfactant and a small ionic additive molecule in poly(fluoroacrylate) films can be determined with better confidence at W band. From these anisotropies it is concluded that the surfactant aggregates exhibit low molecular order, whereas the ionic additives are strongly attached to immobilized ionic clusters. High-field EPR lineshapes at W band are also found to be more sensitive to slow motions on a microsecond time scale than X-band EPR lineshapes. The design of a Fabry-Pérot resonator for measurements on polymer films is discussed and its sensitivity is demonstrated on a wet polymer film with a thickness of 160 μm.  相似文献   

6.
An overview is given on muon spin relaxation (SR) measurements in frustrated and/or low dimensional spin systems. In the frustrated Kagomé lattice system SrCr8Ga4O19, we observed dynamic spin fluctuations of 30 GHz, without any static frozen component even atT=0.1 K, much below the susceptibility-cusp temperatureT g=3.5 K. This is in clear contrast with the case in dilute-alloy spin glassesCuMn andAuFe, where static order develops belowT g. We also present the dimensionality dependence of the sub-lattice magnetization curves in 2-d Heisenberg systems, the remarkable suppression of the ordering temperature in a 1-d system Sr2CuO3, the observation of activation type spin dynamics in a 1-d Ising ferromagnet (DMeFc)(TCNE) aboveT c, slow spin fluctuations ( 60 MHz) in Haldane-gap systems at low temperatures, and some results from organic 1-d and 2-d magnetic systems.  相似文献   

7.
A simple effective method for calculation of EPR spectra from a single truncated dynamical trajectory of spin probe orientations is reported. It is shown that an accurate simulation can be achieved from the small initial fraction of a dynamical trajectory until the point when the autocorrelation function of re-orientational motion of spin label has relaxed. This substantially reduces the amount of time for spectra simulation compared to previous approaches, which require multiple full length trajectories (normally of several microseconds) to achieve the desired resolution of EPR spectra. Our method is applicable to trajectories generated from both Brownian dynamics and molecular dynamics (MD) calculations. Simulations of EPR spectra from Brownian dynamical trajectories under a variety of motional conditions including bi-modal dynamics with different hopping rates between the modes are compared to those performed by conventional method. Since the relatively short timescales of spin label motions are realistically accessible by modern MD computational methods, our approach, for the first time, opens the prospect of the simulation of EPR spectra entirely from MD trajectories of real proteins structures.  相似文献   

8.
Information concerning the interface structure in filler/polymer composites is of key importance for the rationalization of reaction mechanisms in mechano‐chemical (extrusion, blending, etc.), thermal or radiation induced free radical processes and for elucidating the factors underlying the reinforcing mechanism. The analysis of the chain dynamics is a suitable tool for undertaking such investigations because any reactivity parameter (rate constants, collisional frequencies, activation energies) and bonding interactions are strictly related to the mobility of the interacting centres. EPR spectroscopy coupled with specific spin labelling at the filler/polymer interface is a tool for making such novel perspective available. In this work, a spin labelling study of the molecular motion at the filler–rubber interface in a silica–SBR blend is reported. Spin labels of different length, spanning a 9–11 Å depth and linked to the surface of silica particles, were prepared and used for determining the rotational diffusion tensors, the T50 and order parameter in silica/SBR interfaces. The measurements carried out as a function of the temperature in comparison with unbound spin probes dispersed in the rubber matrix have afforded information consistent with the structure of the interfaces predicted by molecular–level theoretical models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The temperature dependence of EPR spectrum of La@C82 in the powder of empty C60 and C70 mixed crystals was studied by EPR spectroscopy employing X- and Q-band microwave frequencies. The rigid limit spectra (at 4.2 K for the X-band and at 132 K for the Q-band) could be analyzed by static spectral simulation which yielded the EPR parameters,g =2.0021,g =1.9970,La A =7.8 MHz,La A ~0 MHz and an isotropic13C coupling value of about 3 MHz. For higher temperatures an appreciable motional averaging effect was observed and the spectra were analyzed by using dynamic spectral simulation based on the stochastic Liouville equation, where we assumed an isotropic rotational motion with the Brownian diffusion. The calculated spectra reproduced the dominant feature of the temperature dependence of the spectra almost satisfactorily for both the X-and Q-band frequencies with the appropriate rotational correlation times. The Arrhenius plots of the correlation time gave two activation energies of 0.9 kcal/mol and 2.9–3.8 kcal/mol for the temperatures below and above 200 K, respectively.  相似文献   

10.
A novel strategy is discussed using site directed spin labelling to study the electron transfer process in photosynthetic reaction centres. An algorithm is presented for numerical simulations of the time resolved EPR spectra of radical pair states in the presence of an observer spin label. This algorithm accounts for spin dynamics, charge recombination and relaxation processes. It is shown that satisfactory agreement between experimental and simulated EPR spectra of the first stabilized radical pair state in photosystem I is achieved for various microwave frequencies. Transient EPR spectra for the radical pair state P?+Q?- in photosystem I were simulated for various distances and positions of the observer spin label with respect to the acceptor quinone molecule. It is shown that distances up to more than 20 Å give rise to observable changes in the transient EPR spectra. Both the additional spin-spin coupling between the quinone radical and the label and the polarization transfer processes contribute to the changes. Furthermore, the shape and intensity of the EPR spectrum of the spin label is altered by the coupling with the radical pair spins for distances up to 25 Å. Experiments on site directed spin labelled photosystem I are thus expected to provide valuable information on the dynamics of electron transfer in photosystem I.  相似文献   

11.
12.
TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) is a nitroxyl amino acid that can be incorporated in the backbone of peptides. DOXYL (4,4-dimethyl-oxazolidine-1-oxyl) is a nitroxyl ring that can be attached rigidly at specific C-atom positions in the acyl chains of phospholipids. Spin-labelled phosphatidylcholines of the DOXYL type have been used previously to establish the transmembrane polarity profile in biological lipid bilayers [D. Marsh, Polarity and permeation profiles in lipid membranes, Proc. Natl. Acad. Sci. USA 87 (2001) 7777-7782]. Here, we determine the polarity dependence of the isotropic (14)N-hyperfine couplings, a(o)(N), and g-values, g(o), in a wide range of protic and aprotic media, for a TOAC-containing dipeptide (Fmoc-TOAC-Aib-OMe) and for a DOXYL-containing fatty acid (12-DOXYL-stearic acid). The correlation between datasets for TOAC and DOXYL nitroxides in the various solvents is used to establish the polarity profile for isotropic hyperfine couplings of TOAC in a transmembrane peptide. This calibration can be used to determine the location of TOAC at selected residue positions in a transmembrane or surface-active peptide. A similar calibration procedure is also applied to a(o)(N) and g(o) for the pyrroline methanethiosulphonate nitroxide (MTSSL) that is used in site-directed spin-labelling studies of membrane proteins.  相似文献   

13.
In this paper we review some of our recent applications of the EPR spin trapping technique to sonochemical studies which include identification of radicals formed in organic liquids and aqueous mixtures of organic liquids, estimation of temperatures of sonochemical regions in mixtures of deuterated and non-deuterated solvents, and the identification of reactive radical intermediates which may play a role in synergistic cell killing by ultrasound and drugs (sonodynamic interactions).  相似文献   

14.
The concept of introducing an additional, stable paramagnetic species into photosynthetic reaction centres to increase the information content of their spin polarized transient EPR spectra is investigated theoretically. The light-induced electron transfer in such systems generates a series of coupled three-spin states consisting of sequential photoinduced radical pairs coupled to the stable spin which acts as an “observer”. The spin polarized transient EPR spectra are investigated using the coupled three-spin system P+IQ A in pre-reduced bacterial reaction centres as a specific example which has been studied experimentally. The evolution of the spin system and the spin polarized EPR spectra of P+IQ A and Q A following recombination of the radical pair (P = primary donor, I = primary acceptor, QA = quinone acceptor) are calculated numerically by solving the equations of motion for the density matrix. The net polarization of the observer spin is also calculated analytically by perturbation theory for the case of a single, short-lived, charge-separated state. The result bears a close resemblance to the chemically induced nuclear polarization (CIDNP) generated in photolysis reactions in which a nuclear spin plays the role of the observer interacting with the radical pair intermediates. However, because the Zeeman frequencies of the three electron spins involved are usually quite similar, the polarization of the electron observer spin in strong magnetic fields can reflect features of the CIDNP effect in both, high and low magnetic fields. The dependence of the quinone spin polarization on the exchange couplings in the three-spin system is investigated by numerical simulations, and it is shown that the observed emissive polarization pattern is compatible with either sign, positive or negative, for a range of exchange couplings, JPI, in the primary pair. The microwave frequency and orientation dependence of the spectra are discussed as two of several possible criteria for determining the sign of JPI.  相似文献   

15.
The isotopically substituted analogs of pH-sensitive imidazoline and imidazolidine radicals have been synthesized and investigated with electron paramagnetic resonance (EPR) spectroscopy. The introduction of2H and15N into the structure of the radical is a useful approach to enhance the information obtained from spin-labeling experiments. The spectra of the radicals have been analyzed with 9.8 (X-band) and 130 GHz (D-band) EPR spectroscopy. The substitution of1H for2H leads to significant narrowing of Gaussian line width, while the substitution of14N for15N in the nitroxyl fragment decreases both the number of spectral lines and Lorentzian line width. These effects result in a significant increase in the peak intensities up to 5–7 times for X-band EPR spectra of one of the imidazoline radicals (R4). The increase in spectral resolution allowed us to reveal the hyperfine interaction splitting with the attached proton (0.36 G) in the protonated form of the radical R4. The influence of proton exchange of the radicals with phosphate and acetate buffers on their EPR spectra has been studied in H2O and D2O. The corresponding rate constants of the proton exchange have been calculated from fitting of the simulated EPR spectra line shapes to experimental spectra. The data obtained demonstrated the advantages of the isotopically substituted spin pH probes in spectral resolution and sensitivity which can be an important factor particularly for applications in vivo where the fundamental sensitivity is much lower. The sensitivity of EPR spectra of these spin probes to the buffer capacity could be of practical importance taking into account the biological relevance of monitoring this parameter in some pathological states.  相似文献   

16.
The importance of the proper choice of diamagnetic diluent used for preparation of standards for quantitative EPR measurements is shown by the example of CuSO4 and VOSO4 standards. The results of determination of the stability of chemical composition of VOSO4-K2SO4 standards stored for various periods of time, performed by different analytical methods, are compared. The examples are given to illustrate application of quantitative EPR measurements in the studies of structure and properties of transition metal ions dispersed in various matrices. Changes in the coordination sphere of surface transition metal ions occurring upon adsorption of gas molecules, the degree of dispersion of these ions and the extent of Mn+?Mn+ interactions derived from quantitative EPR measurements are described. The results of investigation of the mechanism of adsorption and catalytic reactions occurring on dispersed transition metal ions are presented.  相似文献   

17.
A theory of spin relaxation in zero external field is developed for a nonstationary distribution of diffusing particles. Application to μSR experiments in Nb and Bi is made to distinguish between models of muon diffusion in the presence of traps.  相似文献   

18.
An unexplained residual in the fits of theoretical and experimental spectra of exchange broadened nitroxide spin probes reported by Robinson et al. [J. Magn. Reson. 138 (1999) 199] is shown to be understood by inclusion of theoretically predicted lineshape changes into the fitting routine. These lineshape changes provide an additional estimate of the spin exchange frequency that is independent of linewidth methods.  相似文献   

19.
A new thermodynamic model is proposed in order to account for the high spin low spin conversion in metal-organic polymers. The model, based on the idea that the spin conversion occurs in interacting domains of like-spin metal ions, allows to explain most of the important features of various types of spin conversion. The sine qua non condition of the existence of spin transitions with hysteresis is obtained. In the case of very large cooperativity, the model predicts unusual behaviour of the spin conversion system due to a low-temperature metastable high spin state. Existence of such a state is interesting in the context of the light induced excited spin state trapping recently observed in some ferrous compounds. The model is applied to interpret the spin transition in polycrystalline ferrous polymer [Fe 1-y Cu y (Htrz)2 trz] (BF 4) with y = 0.00, 0.01 and 0.10, detected by differential scanning calorimetry, optical reflectivity and electron paramagnetic resonance. The domain size and the interaction energy between the domains are estimated as, respectively, n = 11 and for the y = 0 compound. As the copper content is growing, n and tend to decrease, resulting in transformations of the shape of hysteresis loop which becomes less steep, narrows and shifts to lower temperatures. The electron paramagnetic resonance gives further evidence of the presence of like-spin domains. Received 27 November 1998 and Received in final form 19 April 1999  相似文献   

20.
EPR signal and noise, calculated from first principles, are compared with measured values of signal and noise on an S-band (ca. 2.7 GHz) EPR spectrometer for which all relevant gains and losses have been measured. Agreement is within the uncertainty of the calculations and the measurements. The calculational model that provided the good agreement is used to suggest approaches to optimizing spectrometer design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号