首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polarization spectra of optical absorption of the 4f-4f transition 6 H 15/26 F 3/2 in the rare-earth orthoaluminate DyAlO3 are theoretically and experimentally studied at the temperature T=78 K. It is shown that the nontrivial character of the anisotropy of the polarization absorption spectra at low temperatures can be explained by the J-J mixing of excited multiplets of the 4f 9 configuration of Dy3+ ions in a low-symmetry crystal field of the orthoaluminate structure. The energy and wave functions of the Stark sublevels within the excited 6 F 5/2 multiplet in the 4f 9 configuration of the Dy3+ rare-earth ion in the crystal field of C s symmetry are numerically calculated.  相似文献   

2.
We have obtained analytical expressions for effective parameters of the crystal field that acts on spin-orbit multiplets of 4f N configurations taking into account admixture to them of 4f N?15d excited states and ligand-to-metal charge-transfer states. As an example, we analyze splittings of the ground and excited multiplets of Pr3+ and Tm2+ ions in some crystals without an inversion center. The effect of mixing of states of different configurations is most strongly pronounced for the 1 G 4 and 1 D 2 excited multiplets. The interconfigurational contribution to splittings is different for different multiplets. This circumstance makes it possible to estimate the values of the parameters of the odd-symmetry crystal field, which causes mixing of the 4f N and 4f N?15d states, and the covalence parameters of rare-earth ion-ligand bonds.  相似文献   

3.
Expressions for calculating the matrix elements of the Coulomb interaction of f electrons of the isolated ion with an infinite crystal lattice have been obtained. The contribution of this interaction to the parameters of the crystal field in impurity centers Yb3+: KZnF3, CsCaF3, and Sm3+: CaF2 has been calculated.  相似文献   

4.
The temperature and angular dependences of electron spin resonance (ESR) spectra of Yb3+ ions in a single crystal of fluctuating-valence compound YbB12 were studied. The existence of Yb?Yb ion pairs was observed in a cubic-symmetry crystal. The ions forming the pairs are coupled by the isotropic exchange but interact also with the other pairs by the dipole and exchange coupling. The occurrence of a slight anisotropy in a cubic semiconductor may be the result of a spontaneous break of symmetry specific for the ground state of the Kondo dielectric. A strong temperature dependence of the amplitude of the ESR signals is found at 1.6–4.2 K and interpreted as a result of the capture of electrons by Yb3+ ions from electron traps with a binding energy of 18 K. ESR spectra of Yb3+ single ions in the Γ6 state were observed also. The decrease of temperature from 4.2 to 1.6 K indicates a tendency to the ferromagnetic ordering of Yb?Yb pairs.  相似文献   

5.
The paper is devoted to the problem of the optical anisotropy of the rare-earth ions occupying low-symmetry positions in crystals. The crystal field multiplets arising from LSJ terms of Eu3+ and Tb3+ ions in the crystal field of calcium tungstate scheelite (CaWO4) are analyzed (S4 point symmetry). The selection rules, in particular, polarization rules for the allowed electric dipole optical transitions in the electronic shells of the Eu3+ and Tb3+ in CaWO4 host lattice are discussed. Special attention is paid to the study of the angular (polarization) dependence of the two-photon absorption that seems to be an effective tool for the understanding of the complicated optical pattern. The peculiarities of the anisotropy of the two-photon absorption prove to be specific for each allowed dipole transition in S4 symmetry center.  相似文献   

6.
Zero-phonon lines of a pair center of Mn4+ ions are observed in the luminescence and luminescence-excitation spectra of SrTiO3:Mn crystal. Based on the experimental data, the energy-level structure of the ground state ∣4 A 2g ,4 A 2g 〉 and excited state ∣4 A 2g ,2 E g 〉 of the Mn4+-Mn4+ pair center is constructed. It is shown that the exchange interaction in the ground state of the Mn4+-Mn4+ pair is antiferromagnetic. Energies of the levels are calculated assuming that the pair is formed by Mn4+ ions occupying neighboring octahedral positions of Ti4+ ions along the [110] axis. Experimental values of the exchange integral in the ground state ∣4 A 2g ,4 A 2g 〉 and energies of spin multiplets in the excited state ∣4 A 2g ,2 E g 〉 agree well with calculation of the exchange interaction carried out within the framework of the channel model with the parameters J ξη = 32 cm4-1 and J ζζ = ?45.5 cm4-1. Experimental data and calculations unambiguously demonstrate that zero-phonon lines in the luminescence and luminescence-excitation spectra have magnetic-dipole nature.  相似文献   

7.
The absorption spectra of the Er3+ ions embedded in the AlN matrix have been investigated. The admixture of erbium was introduced in bulk AlN crystals by diffusion. The absorption lines, which are associated with the intraconfigurational electronic ff-transitions from the ground 4 I 15/2-state to the levels of ion Er3+ excited states have been observed in the spectral range of 370–700 nm. The transitions to the state levels 4 F 9/2, 2 H 11/2, 4 F 7/2, 4 F 5/2, 2 H 9/2, and 4 G 11/2 have been investigated in detail at the temperature T = 2 K. The number of the observed lines for these transitions coincides with the theoretically possible one for the electronic ff-transitions in the ions Er3+, which are in the crystal field with the symmetry below cubic. The narrowness of the observed lines and their number convincingly testify the replacement of preferably one regular crystalline position by erbium ions. The implementation of Er3+ in the Al3+ position with the local symmetry C 3v appears the most probable. The energy positions of the levels of excited states for the investigated transitions have been determined. The diagram of the Er3+ ion energy levels in the AlN crystals has been built.  相似文献   

8.
The parameters of the electron paramagnetic resonance (EPR) spectra of S ion pairs in diamagnetic crystals are analyzed. A relation between the spin Hamiltonian constants is established for solitary ions and pairs for (CH3)4NCdCl3: Mn2+ crystals. In contrast to solitary ions, an additional contribution (which is a linear function of the exchange field) to the “single-ion” spin Hamiltonian constants appears in the case of pairs. It is shown that anisotropic exchange mechanisms do not play a significant part in the formation of the axial constant of the spin Hamiltonian for this crystal. Some aspects of the method of studying “single-ion” anisotropy predicted by the two-ion model are developed with the help of an isostructural diamagnetic analog with impurity concentration of the paramagnetic ions of a magnetically concentrated substance sufficiently high for observing the EPR spectrum of the pairs. It is found that the microscopic quantities determined partially from the EPR spectra for pairs and solitary Mn2+ ions in (CH3)4NCdCl3 are in accord with the experimental value of the effective field for the (CH3)4NMnCl3 crystal anisotropy which can be described primarily by the dipole and “single-ion” mechanisms of the exchange origin.  相似文献   

9.
The exchange charge model of crystal field theory has been used to analyze the ground and excited state absorption of tetrahedrally coordinated Cr4+ ion in lithium aluminum oxide LiAlO2 (γ-phase) and lithium dioxogallate LiGaO2. The parameters of the crystal field acting on the Cr4+ ion are calculated from the crystal structure data, taking into account the crystal lattice ions located at distances up to 12.744 Å in LiGaO2 and 13. 180 Å in LiAlO2. The obtained energy level schemes were compared with experimental ground and excited state absorption spectra and literature data on the application of other crystal field models (the angular overlap model and Racah theory) to the considered crystals; a good agreement with experimental data is demonstrated.  相似文献   

10.
The exchange charge model of crystal field theory has been used to analyze systematically the ground state absorption spectra of isoelectronic Cr3+, Mn4+, and Fe5+ ions in an octahedral coordination in the SrTiO3 crystal. The parameters of the crystal field acting on the valence electrons of impurity ions are calculated from the available crystal structure data. A special attention is paid to the analysis of dependencies of the crystal field invariants and covalence effects on the impurity ion. It is shown numerically that the covalence effects between the above impurity ions and ligands increase with an increase of the 3d-ion oxidation state.  相似文献   

11.
The effects of cubic crystal fields on the saturation magnetic moment of Sm3+ ion in ferromagnetic compounds have been investigated. In samarium compounds with magnetic elements, the exchange fieldH ex acting on Sm3+ ion is taken to be proportional to the sublattice magnetization of the magnetic element, while in compounds with nonmagnetic elementsH ex is taken to be proportional to the spin average of the Sm3+ ion and is determined self-consistently. In both types of compoundsH ex is assumed to be along [001] direction. The saturation magnetic moment is calculated by taking into account the admixture of excited (J=7/2 andJ=9/2) levels into the ground (J=5/2) level of Sm3+ ion by crystal fields and exchange fields. It is shown that depending upon the strength, the crystal fields quench or enhance the magnetic moment from the free ion value, and in some cases force Sm3+ ion to behave effectively like an (L+S) ion rather than an (LS)ion. The crystal fields may have important bearing on the performance of samarium compounds as permanent magnet materials.  相似文献   

12.
13.
Sharp emission line spectra of Sm2+ in KCl single crystals are observed up to 40 °K. From these it is possible to verify the idea of a substitution of a regular cation by an impurity ion and of a simultaneous association of a cation vacancy in the nearest neighbourhood [1/2 (110)]. This means that the crystal field at the place of the bivalent Samarium has the site symmetryC 2v . A cubic symmetry does not explain the spectra. It is possible to identify the line groups with the transitions, which are permitted by reason of the selection rules, and to set up the energy level diagram of the Sm2+ ion in KCl. The separation of the single impurity-vacancy complexes was reached by quenching the crystals from 650 °C to room temperature. The assumption of excitation exchange between neighbouring Samarium ions explains the spectra of the non-quenched crystals. The number of emission lines is determined for two different orientations of two dipole complexes towards one another. An interpretation of the absorption spectra of Sm2+ in KCl is proposed.  相似文献   

14.
Optical absorption spectra of trigonal crystal TbFe3(BO3)4 have been studied in the region of 7F65D4 transition in Tb3+ ion depending on temperature (2–220 K) and on magnetic field (0–60 kOe). Splitting of the Tb3+ excited states, both under the influence of the external magnetic field and effective exchange field of the Fe-sublattice, have been determined. Landé factors of the excited states have been found. Stepwise splitting of one of the absorption lines has been discovered in the region of the Fe-sublattice magnetic ordering temperature. This is shown to be due to the abrupt change of equilibrium geometry of the local Tb3+ ion environment only in the excited state of the Tb3+ ion. In general, the magnetic ordering is accompanied by temperature variations of the Tb3+ local environment in the excited states. The crystal field splitting components have been identified. In particular, it has been shown that the ground state (in D 3 symmetry approximation) consists of two close singlet states of A 1 and A 2 type, which are split and magnetized by effective exchange field of the Fe-sublattice. Orientations of magnetic moments of the excited electronic states relative to that of the ground state have been experimentally determined in the magnetically ordered state of the crystal. A pronounced shift of one of absorption lines has been observed in the vicinity of the TbFe3(BO3)4 structural phase transition. The temperature interval of coexistence of the phases is about 3 K.  相似文献   

15.
This article reports on the optical properties of Sm3+-activated GdB3O6 phosphors based on the measurement of their photoluminescence spectra and luminescence decay curves. Energy transfer from Gd3+ to Sm3+ and the concentration quenching of the Sm3+ ion emission are investigated. From the photoluminescence spectra and decay curves, the energy transfer from Gd3+ to Sm3+ is confirmed. The concentration quenching of the Sm3+ ion emission can be ascribed to resonant cross-relaxation. The interaction between the Sm3+ ions is derived of the electric dipole–dipole type through fitting the data with the Inokuti-Hirayama model. The critical distances and energy transfer microparameter for the transfer processes are given. The decay curves of Sm3+4G5/2 level exhibiting a buildup and decay process also confirm the energy transfer from Gd3+ to Sm3+ and between Sm3+ ions.  相似文献   

16.
Magnetization and susceptibility measurements were performed on a single crystal of DyNi5 along the three main symmetry axes of the ortho-hexagonal cell. Below its ordering temperature (Tc = 11.6 K), b and c are respectively the easy and hard magnetization axes. The strong anisotropy originates from the crystalline electric field acting on the 4f electrons of the Dy3+ ions. A small magnetization is induced on nickel atoms by the applied field and the exchange interactions with the dysprosium atoms. The crystal field parameters, the molecular field coefficients and the susceptibility of nickel atoms are determined from the experimental data.  相似文献   

17.
The spin-Hamiltonian parameters (g factor g //, g and hyperfine structure constants A //, A ) for Er3+ ion at the trigonal Al3+ site of AlN crystal are calculated by diagonalising the 52 × 52 energy matrix. The matrix are related to the ground mutiplet 4I15/2 and the first to third excited multiplets 4I13/2, 4I11/2 and 4I9/2 for 4f11 ions in trigonal crystal field under an external magnetic field. The crystal-field parameters used in the matrix are obtained from the superposition model and the local lattice relaxation due to the substitution of Er3+ for Al3+ is considered. The calculated spin-Hamiltonian parameters are in reasonable agreement with the experimental values and the signs of hyperfine structure constants are suggested. The results are discussed.  相似文献   

18.
A mechanism of direct excited exchange between the nearest Eu2+ ions in Eu-chalcogenides caused by simultaneous electron 4f7 → 4f65d1 transitions on both ions is proposed. The wavefunctions are considered, the energy spectrum is found, and the form of effective spin-Hamiltonian is determined for the Eu2+ ? Eu2+ “molecule” in crystal field of D2h symmetry. The change of effective exchange integral between nearest Eu2+ ions in a series of Eu-chalcogenides is discussed briefly.  相似文献   

19.
The optical absorption spectra of Er3+ in single crystals of InCl3 and ScCl3 have been obtained between 14,000 and 29,000 cm?1. The observed crystal field splittings are interpreted in terms of crystal potential of symmetry 3m for ScCl3 and of symmetry 2m for InCl3. There is however found, that for both cases the splittings will be approximately explained by a crystal potential of cubic symmetry. The employed hostlattices are of special interest, because the ions of the iron series can occupy the same sites as the rare earth ions.  相似文献   

20.
The magneto-optical and magnetic properties of Nd 3+ ions in Y 3Fe 5O 12 garnet are analyzed by using quantum theory. In the spontaneous state, the magneto-optical effects originate mainly from the intra-ionic electric dipole transitions between the 4 f 3 and 4 f 25d states split by the spin-orbit, crystal field, and superexchange interactions. For the excited configuration, the coupling scheme of Yanase is extended to the Nd 3+ ion. The magneto-optical resonance frequencies are mainly determined by the splitting of the 5d states induced by the crystal field. The theoretical results of both Nd magnetization and Faraday rotation are in good agreement with experiments. The observed Faraday rotation is proved to be of the paramagnetic type. Although the value of the magneto-optical resonance frequency derived from a macroscopic analysis is approximately confirmed by our theoretical study, a new assignment about the transitions associated with this resonance is unambiguously determined. The spin-orbit coupling of the ground configuration has a great influence on both the Faraday rotation and magnetization, but, unlike the theoretical results obtained in some metals and alloys, the relation between the Faraday rotation and the spin-orbit coupling strength is more complex than a linear one. The magnitude of the magneto-optical coefficient increases as the spin-orbit interaction strength of the ground configuration decreases when the strength is not very weak. Finally, the temperature dependence of the magneto-optical coefficient and the effect of the mixing of different ground-term multiplets induced by the crystal field are analyzed. Received 8 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号