首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 726 毫秒
1.
The adsorption isotherms of carbon monoxide and xenon as well as the129Xe NMR chemical shifts of xenon in highly (68 and 87%) cadmium-exchanged zeolite NaY were measured. The complete set of experimental data can quantitatively be reproduced with a model that considers localized adsorption of both adsorbate molecules on cadmium and sodium cation sites in the supercages. The concentrations of the supercage cadmium cations as well as their characteristics like adsorption constants for Xe and CO and129Xe NMR chemical shifts were determined.  相似文献   

2.
Little is known about129Xe NMR spectral features and spin-lattice relaxation behavior, and the dynamics of xenon atoms, for xenon adsorbed on solid surfaces at cryogenic temperatures (≤77 K), where exchange with gas-phase atoms is not a significant complication. We report129Xe NMR experiments at 9,4 T that provide such information for xenon adsorbed onto the hydroxylated surface of a number of microporous silica samples at 77 K. A convenient design for these cryogenic experiments is described. Dynamics of surface-adsorbed xenon atoms on the time scale of seconds can be observed by129Xe NMR hole-burning experiments; much slower dynamics occurring over hours and days are evidenced from changes with time of the129Xe NMR chemical shifts. The peak maxima occur in the region ca. 180–316 ppm, considerably downfield of129Xe shifts previously reported on surfaces at higher temperatures, and closer to the shift of xenon bulk solid (316.4±1 ppm). The129Xe spin-lattice relaxation timesT 1 range over five orders of magnitude; possible explanations for both nonexponential relaxation behavior and extremely shortT 1 values (35 ms) are discussed. Preliminary131Xe and1H NMR results are presented, as well as a method for greatly increasing the sensitivity of129Xe NMR detection at low temperatures by using closely-spaced trains of rf pulses.  相似文献   

3.
The high sensitivity of the129Xe nuclear magnetic resonance (NMR) chemical shift to the environment was used for characterization of biological tissues and plants. The xenon gas was dissolved under moderate pressure by means of a special device in small pieces of human and animal tissues (heart, muscle, lung, kidney, liver, spleen, brain, sinew, cartilage and hypodermic fat) or plants (leaves, stems, grains, fruits) and the NMR parameters were measured in vitro. The observed line with the chemical shift ~ 180 ppm was attributed to the xenon located in various cellular structures such as lipid shells, intracellular formations. A xenon spectrum in the lungs obtained in vitro coincides with that in the lungs of a mouse measured in vivo by other investigators. The NMR parameters were found to reveal noticeable distinctions between normal and tumour-affected tissues. The analysis of the129Xe NMR spectra of the sinew and the cartilage revealed the dependence of the magnetic parameters on the age of the substance. This fact could be accounted for by the changes of the absorption ability of a biological system due to age transformations. The results obtained in comparison with biochemical data reveal the promissory outlook of129Xe NMR for the investigation of the state of biological tissues and for medical diagnostics.  相似文献   

4.
The porosity in porous silicon was characterized using hyperpolarized (HP) xenon as a probe. HP xenon under conditions of continuous flow allows for the rapid acquisition of xenon NMR spectra that can be used to characterize a variety of materials. Two-dimensional exchange spectroscopy (EXSY) (129)Xe NMR experiments using HP xenon were performed to obtain exchange pathways and rates of xenon mobility between pores of different dimensions within the structure of porous silicon and to the gas phase above the sample. Pore sizes are estimated from chemical shift information and a model for pore geometry is presented.  相似文献   

5.
The interaction of xenon with different proteins in aqueous solution is investigated by 129Xe NMR spectroscopy. Chemical shifts are measured in horse metmyoglobin, hen egg white lysozyme, and horse cytochrome c solutions as a function of xenon concentration. In these systems, xenon is in fast exchange between all possible environments. The results suggest that nonspecific interactions exist between xenon and the protein exteriors and the data are analyzed in term of parameters which characterize the protein surfaces. The experimental data for horse metmyoglobin are interpreted using a model in which xenon forms a 1:1 complex with the protein and the chemical shift of the complexed xenon is reported (Locci et al., Keystone Symposia “Frontiers of NMR in Molecular Biology VI”, Jan. 9–15, 1999, Breckenridge, CO, Abstract E216, p. 53; Locci et al., XeMAT 2000 “Optical Polarization and Xenon NMR of Materials”, June 28–30, 2000, Sestri Levante, Italy, p. 46).  相似文献   

6.
Matthias Koch 《Surface science》2006,600(18):3586-3589
Nuclear magnetic resonance (NMR) is performed on monolayer (ML) amounts of adsorbed 129Xe on a single crystal substrate. The inherently low sensitivity of NMR is overcome by using highly nuclear spin polarized 129Xe that has been produced by optical pumping. A polarization of 0.8 is regularly achieved which is 105 times the thermal (Boltzmann) polarization. The experiments are performed with a constant flux of xenon atoms impinging on the surface, typically 4 ML/s. The chemical shift (σ) of 129Xe is highly sensitive to the Xe local environment. We measured profoundly different shifts for the Xe bulk, for the surface of the Xe bulk, and for Xe on CO/Ir(1 1 1). The growth of the bulk is seen in a phase transition like change of σ as a function of temperature at constant Xe flux. At temperatures where no bulk forms at a flux of 4 ML/s, the xenon exchange rate was measured by a spin inversion/recovery method. The exchange time of Xe is found to be 0.24 s at 63.4 K and 64.4 K and somewhat longer at 61.2 K. An analysis is given involving the desorption out of the second layer and fast mixing of first and second layer atoms at these temperatures.  相似文献   

7.
The interaction of xenon with different proteins in aqueous solution is investigated by (129)Xe NMR spectroscopy. Chemical shifts are measured in horse metmyoglobin, hen egg white lysozyme, and horse cytochrome c solutions as a function of xenon concentration. In these systems, xenon is in fast exchange between all possible environments. The results suggest that nonspecific interactions exist between xenon and the protein exteriors and the data are analyzed in term of parameters which characterize the protein surfaces. The experimental data for horse metmyoglobin are interpreted using a model in which xenon forms a 1:1 complex with the protein and the chemical shift of the complexed xenon is reported (Locci et al., Keystone Symposia "Frontiers of NMR in Molecular Biology VI", Jan. 9--15, 1999, Breckenridge, CO, Abstract E216, p. 53; Locci et al., XeMAT 2000 "Optical Polarization and Xenon NMR of Materials", June 28--30, 2000, Sestri Levante, Italy, p. 46).  相似文献   

8.
The sensitivity of (129)Xe chemical shifts to weak nonspecific xenon-protein interactions has suggested the use of xenon to probe biomolecular structure and interactions. The realization of this potential necessitates a further understanding of how different macromolecular properties influence the (129)Xe chemical shift in aqueous solution. Toward this goal, we have acquired (129)Xe NMR spectra of xenon dissolved in amino acid, peptide, and protein solutions under both native and denaturing conditions. In general, these cosolutes induce (129)Xe chemical shifts that are downfield relative to the shift in water, as they deshield the xenon nucleus through weak, diffusion-mediated interactions. Correlations between the extent of deshielding and molecular properties including chemical identity, structure, and charge are reported. Xenon deshielding was found to depend linearly on protein size under denaturing solution conditions; the denaturant itself has a characteristic effect on the (129)Xe chemical shift that likely results from a change in the xenon solvation shell structure. In native protein solutions, contributions to the overall (129)Xe chemical shift arise from the presence of weak xenon binding either in cavities or at the protein surface. Potential applications of xenon as a probe of biological systems including the detection of conformational changes and the possible quantification of buried surface area at protein-protein interfaces are discussed.  相似文献   

9.
NaY zeolite samples loaded with sodium metal by vapor phase deposition have been investigated using129Xe NMR spectroscopy. At low sodium concentration, the129Xe NMR spectrum showed three resonance lines which clearly indicate the existence of distinct domains in the zeolite sample. Such an observation suggests that the diffusion of the xenon atoms into each domain only occurs with respect to the NMR time scale (2.9 ms). As the sodium concentration increases, observation of a single broad line indicate a macroscopic homogenization of the system. The shift of this line is explained in part due to a paramagnetic interaction between the xenon atoms and the unpaired electrons of particles containing an odd number of sodium atoms. The linewidth is due to the distribution of the local magnetic fields partially averaged by the rapid motion of the xenon atoms and to the statistical distribution of the sodium particles in the supercage cavities. The paramagnetic interaction vanishes with the oxidation of the sample leading to a narrowing and a shift of the line to higher magnetic fields.  相似文献   

10.
2D-EXSY NMR methods were used to explore diffusion between different domains in zeolites on two very different length scales. Measurements were made on xenon-containing samples consisting of a mixture of NaX and NaY zeolite particles which give distinct resonance lines. The cross peaks observed were interpreted in terms of interparticle exchange, and exchange rates were measured as a function of particle size. This kind of experiment with a length scale of microns to mm should be useful in model studies of diffusion in packed catalyst beds. Measurements also were made to study exchange on a much smaller length scale between the main-channel and side-pocket sites in samples of microcrystalline Na-mordenite. Exchange rates and site occupancies were measured as a function of temperature, yielding activation energies for xenon desorption and intersite diffusion. Also, information was obtained on the distribution of inequivalent side-pocket sites which leads to the large xenon NMR linewidths for this type of site.  相似文献   

11.
We consider the role of polarization in the adsorption of Xe in zeolites of type A by direct comparative analysis of the adsorption isotherms, distributions of occupancies, and 129Xe NMR chemical shifts of Xen in cages containing CaxNa12 −2x ions per alpha cage (x = 0, 1, 2, 3, 5). We find that the qualitative trends in the adsorption isotherms, and in the progressions of Xen chemical shifts (for n = 0–8 in cages with x = 0, 1 Ca2+ ions and for n = 0–5 in cages with x = 2, 3 Ca2+ ions) upon increasing the level of Ca2+ ion for Na+ ion substitution could only be accounted for by including polarization of the Xe atom by the zeolite framework and its ions. This system, which permits observation of individual Xen peaks and of directly comparable adsorption isotherms in several cage types, provides a good model system for the interpretation of the more general case in which only the overall average 129Xe NMR chemical shift is observed in open network zeolites, arising from free exchange of Xe among cavities of variable occupancy and variable cation distribution.  相似文献   

12.
A sample of polystyrene beads, 18 μm in diameter, has been sealed in an NMR tube under 10 atm of xenon gas. Two dimensional,129Xe NMR spectra show cross peaks between the resonances corresponding to xenon in the free gas and the sorbed state, indicating that appreciable exchange occurs during the mixing time of the NMR experiment. Selective saturation of the free gas resonance attenuates the integrated intensity of the sorbed xenon resonance as a function of saturation time, thus allowing the accurate measurement of the exchange rates between the gas and the sorbed states. A model has been developed using a slightly modified form of Crank’s treatment of diffusion in a sphere which allows for the accurate determination of the diffusion coefficient for xenon in the sorbed state. The diffusion coefficient for xenon in polystyrene at 25°C is determined to be 2.9·10?9 cm2/s.  相似文献   

13.
pacc:6116N,8100Thetasksofnanocarbonmorphologyand porositycharacterizationarealwaysactually.So farthetextureandmicrostructureofcarbonswere examinedonlybysuitableadsorptionmethods,whicharenotalwayseffective.The129XeNMR onadsorbedxenonwasfirstintroducedandde…  相似文献   

14.
129 Xe with a nuclear polarization far above the thermal equilibrium value (hyperpolarized) is used in NMR studies to increase sensitivity. Gaseous, adsorbed, or dissolved xenon is utilized in physical, chemical, and medical applications. With the aim in mind to study single-crystal surfaces by NMR of adsorbed hyperpolarized 129Xe, three problems have to be solved. The reliable production of 129Xe with highest nuclear polarization possible, the separation of the xenon gas from the necessary quench gas nitrogen without polarization loss, and the dosing/delivery of small amounts of polarized xenon gas to a sample surface. Here we describe an optical pumping setup that regularly produces xenon gas with a 129Xe nuclear polarization of 0.7(±0.07). We show that a freeze–pump–thaw separation of xenon and nitrogen is feasible without a significant loss in xenon polarization. The nitrogen partial pressure can be suppressed by a factor of 400 in a single separation cycle. Dosing is achieved by using the low vapor pressure of a frozen hyperpolarized xenon sample. Received: 12 June 1998  相似文献   

15.
Hyperpolarized (hp) (131)Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T(1) relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent (131)Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in (129)Xe SEOP. (131)Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase (131)Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp (131)Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp (131)Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I ≥ 1/2 nuclei is presented.  相似文献   

16.
The surface of a typical laboratory single crystal has about 10(15) surface atoms or adsorption sites, respectively, and is thus far out of reach for conventional NMR experiments using thermal polarization. It should however be in reach for NMR of adsorbed laser polarized (hyperpolarized) 129Xe, which is produced by spin transfer from optically pumped rubidium. With multilayer experiments of xenon adsorbed on an iridium surface we do not only demonstrate that monolayer sensitivity has been obtained, we also show that such surface experiments can be performed under ultra high vacuum conditions with the crystal being mounted in a typical surface analysis chamber on a manipulator with far-reaching sample heating and cooling abilities. With only four spectra summed up we present an NMR signal from at most 4x10(14) atoms of 129Xe, four layers of naturally abundant xenon, respectively. The fact that no monolayer signal has been measured so far is explained by a fast Korringa relaxation due to the Fermi contact interaction of the 129Xe nuclei with the electrons of the metal substrate. T(1)-relaxation times in the order of several ms have been calculated using all electron density functional theory for several metal substrates.  相似文献   

17.
Palladium was supported on CaY zeolite by ion exchange of Pd(NH3) 4 2+ into CaY zeolite, calcination in O2 and subsequent reduction with H2. Platinum and silver were added to this Pd/CaY zeolite by ion exchange of Pt(NH3) 4 2+ and Ag+, respectively, and subsequent reduction with Hg. Extended X-ray absorption fine structure of these metals indicates that the successive metal-loading treatments lead first to the formation of a 1-nm Pd cluster inside the supercage of CaY zeolite and to the subsequent formation of bimetallic clusters through incorporation of Pt and Ag atoms into the small Pd cluster. The line width and chemical shift of129Xe NMR spectrum of xenon gas adsorbed on the zeolite show dramatic changes during the metal clustering procedure, which indicates that129Xe NMR spectroscopy can be used to probe the formation of bimetallic clusters.  相似文献   

18.
We present a novel nuclear magnetic resonance (NMR) technique that provides a noninvasive, direct measurement of gas exchange in a three-dimensional gas-fluidized bed of solid particles. The NMR spectrum of hyperpolarized 129Xe gas in an Al2O3 particle bed displays three resolved peaks corresponding to xenon in bubbles, the interstitial spaces (emulsion), and adsorbed on particles. Modified NMR exchange and saturation recovery sequences, together with data analysis based on an exchange-coupled set of Bloch equations, yield gas exchange rate constants between the emulsion and adsorbed phases, and between the bubble and emulsion phases. The results are in approximate agreement with previously unverified predictions from well-known models of fluidized bed behavior. Incorporation of NMR imaging methodologies would straightforwardly allow similar measurements on a spatially resolved basis. Authors' address: Ross W. Mair, Harvard Smithsonian Center for Astrophysics, MS 59, 60 Garden Street, Cambridge, MA 02138, USA  相似文献   

19.
The thermodynamic properties of the adsorption of xenon on the stepped Pd(s)[8(100)×(110)] surface have been studied over a wide range of pressure (5×10?11 to 1×10?4 Torr) and temperature (40–140 K). We have measured adsorption isobars using AES in order to evaluate the surface coverage. By choosing pressure and temperature we have studied under equilibrium conditions, the successive adsorption of xenon on the steps and on the terraces until the first layer is formed, the condensation of the second layer as well as the formation of xenon multilayers. For a small range of pressure and temperature, adsorption takes place only on the atomic steps. The LEED pattern shows that only every other site along the steps is occupied. The extrapolated initial heat of adsorption for steps is EadS = 10.2 kcal/mol, decreasing monotonically by about 2 kcal/mol as the relative coverage of the step sites increases. The dipole moment of the Xe atoms adsorbed on steps is 1.12 D. During adsorption on the terraces the LEED observations suggest that the xenon adlayer is non-localized up to completion of the hexagonally close packed monolayer. The initial heat of adsorption on the terraces, EadT is 8.2 kcal/mol and decreases continuously to a value of 6.9 kcal/mol for a complete monolayer due to lateral repulsive interactions between the adsorbed xenon atoms. The induced dipole moment of Xe on terraces is reduced to 0.49 D. The 5p12 binding energy of Xe adsorbed on terrace sites is 0.3 eV smaller than that of Xe occuping step sites. The differential molar entropy of the adsorbed layer on the terraces as a function of coverage compares fairly well with the calculated value for an ideally mobile two-dimensional gas. No indication of the growth of two-dimensional xenon islands has been found under these conditions. The isosteric heat of adsorption for the second layer is Eadsec = 5.8 kcal/mol independently of the coverage. The condensation of the second layer is a first order two-dimensional gas ? two-dimensional solid phase transition in opposition to the continuous nature of the adsorption of the first layer (extending over a wide range of temperature for a given pressure). The induced dipole moment is further reduced for the Xe second layer to a value of 0.11 D. Finally, the condensation of multilayers proceeds with a latent heat of transformation of Econd = 3.8 kcal/mol in excellent agreement with the known bulk value for the heat of sublimation of xenon. The line shape of the NVV low energy Auger transitions of xenon or the UPS binding energies of the Xe 5p32,12 spectra allow a clear distinction between first, second and higher layer Xe atoms. We have also established the temperature/pressure conditions for equilibrium between first, second and bulk xenon layers, i.e. a so-called “roughening point”.  相似文献   

20.
The adsorption of xenon has been studied with UV photoemission (UPS), flash desorption (TDS) and work function measurements on differently conditioned Ru(0001) surfaces at 100 K and at pressures up to 3 × 10?5 Torr. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) served to ascertain the surface perfectness. On a perfect Ru(0001) surface only one Xe adsorption state is observed, which is characterized byXe5p32,12 electron binding energies of 5.40 and 6.65 eV, an adsorption energy of Ead≈ 5 kcal/mole and dipole moment of μ'T ≈ 0.25 D. On a stepped-kinked Ru(0001) surface, the terrace-width, the step-height and step-orientation of which are well characterized with LEED, however, two coexisting xenon adsorption states are distinguishable by an unprecedented separation inXe 5p32,12 electron binding energies of 800 meV, by their different UPS intensities and line shapes, by their difference in adsorption energy ofΔEad ≈ 3 kcal/mole and finally by their strongly deviating dipole moments of μS = 1.0 D and μT = 0.34 D. The two xenon states (which are also observed on a slightly sputtered surface) are identified as corresponding to xenon atoms being adsorbed at step and terrace sites, respectively. Their relative concentrations as deduced from the UPS intensities quantitatively correlate with the abundance of step and terrace sites of the ideal TLK surface structure model as derived from LEED. Furthermore, ledge-sites and kink-sites are distinguishable via Ead. The Ead heterogeneity on the stepped-kinked Ru(0001) surface is interpreted in terms of different coordination and/or different charge-transfer-bonding at the various surface sites. The enormous increase in Xe 5p electron binding energy of 0.8 eV for Xe atoms at step sites is interpreted as a pure surface dipole potential shift. —The observed effects suggest selective xenon adsorption as a tool for local surface structure determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号