首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小宽厚比喷嘴喷射出的平面水膜进入静止空气中,在不同气流流速环境下对水膜碎裂过程进行了实验研究。结果表明,静止空气中的水膜表面波呈现对称波形,射流的碎裂长度随雷诺数的增大而增大,喷射压力对射流碎裂长度没有直接影响。空气助力作用使平面射流表面波的上、下气液交界面出现相位差。水膜的碎裂长度随空气助力气流速度的增大而减小;空气助力对于低雷诺数水膜射流具有很强的促进碎裂作用,所以会极大地改善低雷诺数射流的一次雾化效果。随着水流雷诺数的提高,空气助力作用对水膜碎裂长度的影响大为减弱;即使在高速助力空气的作用下,水膜仍长期保持较稳定的射流流态,没有出现明显的水膜撕裂现象。说明在小宽厚比喷嘴的瑞利(Rayleigh)模式射流中,高雷诺数射流是水膜的稳定因素。与气液流速比、气流马赫数等无量纲参数相比,液体喷射的雷诺数是射流碎裂的主要影响因素。  相似文献   

2.
This paper describes a new way of generating pulsed air–water jet by entraining and mixing air into the cavity of a pulsed water jet nozzle. Based on the theory of hydro-acoustics and fluid dynamics, a theoretical model which describes the frequency characteristic of the pulsed air–water jet is outlined aimed at gaining a better understanding of this nozzle for generating pulses. The calculated result indicates that as the air hold-up increases, the jet oscillation frequency has an abrupt decrease firstly, and then reaches a minimum gradually at α (air hold-up)=0.5, finally it gets increased slightly. Furthermore, a vibration test was conducted to validate the present theoretical result. By this way, the jet oscillation frequency can be obtained by analyzing the vibration acceleration of the equal strength beam affected by the jet impinging. Thereby, it is found that the experimental result shows similar trend with the prediction of the present model. Also, the relationship between vibration acceleration and cavity length for the pulsed water jet follows a similar tendency in accord with the pulsed air–water jet, i.e. there exists a maximum for each curve and the maximum occurs at the ratio of L/d1 (the ratio of cavity length and upstream nozzle diameter) =2.5 and 2.2, respectively. In addition, experimental results on specimens impinged by the pulsed water jet and pulsed air–water jet show that the erosion depth increases slightly with air addition within a certain range of cavity length. Further, this behavior is very close to the vibration test results. As for erosion volume, the air entrained into the cavity significantly affects the material removal rate.  相似文献   

3.
水下欠膨胀高速气体射流的实验研究   总被引:14,自引:0,他引:14  
戚隆溪  曹勇  王柏懿 《力学学报》2000,32(6):667-675
采用实验途径研究了下水高速气体射流的动力学特性,研制了水下高速气体射流实验系统并发展了相应的测试手段。实验中,用插入式静压探针测量了射流轴线静压分布;用γ射线衰减法测量了径向空隙率分布,从而揭示了水下高速气体射流均压和掺混两个过程的基本规律。测量结果表明:水下高速气体射流在欠膨胀工况下运行时,近场将出现含有复杂波系结构的膨胀压缩区域,由于气水的掺混作用,水下欠膨胀气体射流均压化过程比空气中衰减得快。测量结果还表明,水下射流在近场区的混合层由气水两相占据,其流态从靠近气体侧的液滴流型过渡到靠近液体侧的气泡流型。  相似文献   

4.
The objective of this paper is to examine the effect of bubbles on the turbulence levels of a water jet. Simultaneous measurements of the axial and radial velocity components were taken in a bubbly jet with a Laser Doppler Velocimeter (LDV) and then compared to the velocities of a single phase jet at the same liquid flow rate. Mean bubble diameters ranged from 0.6 to 2 mm and the void fractions were up to about 20%. The liquid Reynolds numbers were from 5,000 to 10,000 approximately. The measurements extended to from an axial distance of 4–12 cm. It was observed that bubbles did not affect significantly the average velocity profiles in the jet. However bubbles increased the turbulence intensities in the core of the jet near the jet exit. The increase in turbulence intensities was more pronounced at lower Reynolds numbers and at higher void fractions.  相似文献   

5.
Experiments with large diameter gravity driven impacting liquid jets   总被引:2,自引:0,他引:2  
Storr  G. J.  Behnia  M. 《Experiments in fluids》1999,27(1):60-69
 The phenomenon of a liquid jet released under gravity and falling through or impacting onto another liquid before colliding with an obstructing solid surface has been studied experimentally under isothermal conditions. Usually the jet diameter was sufficiently large to ensure jet coherency until collision. Direct flow visualization was used to study jets released into water pools with no air head space and jets impacting onto water pools after falling through an air head space. It is shown that distances predicting the onset of buoyancy and the entrainment of air using derivations from continuous plunging jets, are not applicable for impacting jets. The morphology of jet debris after collision with the solid surfaces correlates with the wetting properties of the jet liquid on the surface. Received: 28 November 1997 / Accepted: 21 May 1998  相似文献   

6.
The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum–flux ratios. Sufficient temporal resolution to capture small scale effects was obtained by high-speed recording, while directional illumination allowed variation in field of view. Shock pattern and flow topology were visualized by Schlieren-technique. Correlations are proposed on relating water jet penetration height and lateral extension with the injection ratio and orifice diameter for circular injector jets. Penetration height and lateral extension are compared for different injector shapes at relevant jet-to-air momentum–flux ratios showing that penetration height and lateral extension decrease and increase, respectively, with injector’s aspect ratio. Probability density function analysis has shown that the mixing of the jet with the crossflow is completed at a distance of x/d j  ~ 40, independent of the momentum–flux ratio. Mean velocity profiles related with the liquid jet have been extracted by means of an ensemble correlation PIV algorithm. Finally, frequency analyses of the jet breakup and fluctuating shock pattern are performed using a Fast Fourier algorithm and characteristic Strouhal numbers of St = 0.18 for the liquid jet breakup and of St = 0.011 for the separation shock fluctuation are obtained.  相似文献   

7.
自振脉冲气液射流振动分析   总被引:2,自引:0,他引:2  
从提高射流利用率出发, 在自振脉冲水射流喷嘴振荡腔上开孔自吸入空气, 以形成一种自振脉冲气液射流, 研 究其振荡频率以及打击力的实际影响因素.基于水声学与流体动力学原理建立自振脉冲气液射流频率模型, 并以悬臂梁为靶物, 通过考察射流冲击悬臂梁时的振动特性获得其时域及频域特征.结果表明, 自振脉冲气液射流的振荡频率随腔长增加单调递减, 随含气率变化存在极小值, 且在初始段发生骤变, 实测值与理论值相吻合;对应自振脉冲气液射流产生最大谐振峰值的最优腔长略小于自振脉冲水射流, 且前者最大谐振峰值较后者明显提高.  相似文献   

8.
The large-scale turbulence and high air content in a hydraulic jump restrict the application of many traditional flow measurement techniques. This paper presents a physical modelling of hydraulic jump, where the total pressure and air–water flow properties were measured simultaneously with intrusive probes, namely a miniature pressure transducer and a dual-tip phase-detection probe, in the jump roller. The total pressure data were compared to theoretical values calculated based upon void fraction, water depth and flow velocity measured by the phase-detection probe. The successful comparison showed valid pressure measurement results in the turbulent shear region with constant flow direction. The roller region was characterised by hydrostatic pressure distributions, taking into account the void fraction distributions. The total pressure fluctuations were related to both velocity fluctuations in the air–water flow and free-surface dynamics above the roller, though the time scales of these motions differed substantially.  相似文献   

9.
This paper presents a combined experimental and numerical study of the flow characteristics of round vertical liquid jets plunging into a cylindrical liquid bath. The main objective of the experimental work consists in determining the plunging jet flow patterns, entrained air bubble sizes and the influence of the jet velocity and variations of jet falling lengths on the jet penetration depth. The instability of the jet influenced by the jet velocity and falling length is also probed. On the numerical side, two different approaches were used, namely the mixture model approach and interface-tracking approach using the level-set technique with the standard two-equation turbulence model. The numerical results are contrasted with the experimental data. Good agreements were found between experiments and the two modelling approaches on the jet penetration depth and entraining flow characteristics, with interface tracking rendering better predictions. However, visible differences are observed as to the jet instability, free surface deformation and subsequent air bubble entrainment, where interface tracking is seen to be more accurate. The CFD results support the notion that the jet with the higher flow rate thus more susceptible to surface instabilities, entrains more bubbles, reflecting in turn a smaller penetration depth as a result of momentum diffusion due to bubble concentration and generated fluctuations. The liquid average velocity field and air concentration under tank water surface were compared to existing semi-analytical correlations. Noticeable differences were revealed as to the maximum velocity at the jet centreline and associated bubble concentration. The mixture model predicts a higher velocity than the level-set and the theory at the early stage of jet penetration, due to a higher concentration of air that cannot rise to the surface and remain trapped around the jet head. The location of the maximum air content and the peak value of air holdup are also predicted differently.  相似文献   

10.
An example of high-velocity open channel flows is a supercritical flow past an abrupt drop. In such a geometry, the basic air–water flow properties were measured, including distributions of void fraction and bubble count rate, and local air and water chord size distributions, at and downstream of the backward-facing step. The bubble count rate distributions were compared with a conceptual model of streamwise distribution of air and water chords which yields a quasi-parabolic relationship between bubble count rate and void fraction. The proposed model was an attempt to explain the experimental relationship between bubble count rate and void fraction, rather a meticulous breakdown of the complex air–water structure.  相似文献   

11.
An abrasive water-jet cutting process is one in which water pressure is raised to a very high pressure and forced through a very small orifice to form a very thin high speed jet beam. This thin jet beam is then directed through a chamber and then fed into a secondary nozzle, or mixing tube. During this process, a vacuum is generated in the cham- ber, and garnet abrasives and air are pulled into the chamber, through an abrasive feed tube, and mixes with this high speed stream of water. Because of the restrictions introduced by the abrasive feed tube geometry, a vacuum gradient is generated along the tube. Although this phenomenon has been recog- nized and utilized as a way to monitor nozzle condition and abrasive flowing conditions, yet, until now, conditions inside the abrasive feed line have not been completely understood. A possible reason is that conditions inside the abrasive feed line are complicated. Not only compressible flow but also multi- phase, multi-component flow has been involved in inside of abrasive feed tube. This paper explored various aspects of the vacuum creation process in both the mixing chamber and the abrasive feed tube. Based on an experimental exploration, an analytical framework is presented to allow theoretical calculations of vacuum conditions in the abrasive feed tube.  相似文献   

12.
Modification of shear stress due to air bubbles injection in a rotary device was investigated experimentally. Air bubbles inject to the water flow crosses the neighbor of the hub which can rotate just by water flow shear stresses, in this device. Increasing air void fraction leads to decrease of shear stresses exerted on the hub surface until in high void fractions, the hub motion stopped as observed. Amount of skin friction decrease has been estimated by counting central hub rotations. Wall shear stress was decreased by bubble injection in all range of tested Reynolds number, changing from 50,378 to 71,238, and also by increasing air void fraction from zero to 3.06%. Skin friction reduction more than 85% was achieved in this study as maximum measured volume of air fraction injected to fluid flow while bubbles are distinct and they do not make a gas layer. Significant skin friction reduction obtained in this special case indicate that using small amount of bubble injection causes large amount of skin friction reduction in some rotary parts in the liquid phases like as water.  相似文献   

13.
This paper describes measurements of void fractions, bubble frequencies and bubble sizes in hydraulic jumps with Froude numbers 2.0, 2.4, 3.7 and 4.8. In each case data were obtained with a dual-tip optical fibre probe at a large number of points throughout the jump. Across the lower part of the flow, dominated by air entrainment into a region of turbulent shear, void fractions follow a Gaussian distribution. In the upper region, dominated by interactions with the free surface, the void fraction follows the form of an error function. The intersection between these two profiles provides a well-defined boundary between the two regions. Comparisons are made with measurements at higher Froude numbers [by Chanson, H., Brattberg, T., 2000. Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow 26, 583–607] revealing a very large measure of compatibility between the two sets of data.  相似文献   

14.
A hydraulic jump is characterized by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air–water flow measurements were performed in a large-size facility using two types of phase-detection intrusive probes: i.e. single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent integral time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of Chanson [H. Chanson, Bubbly flow structure in hydraulic jump, Eur. J. Mech. B/Fluids 26 (3) (2007) 367–384], providing the turbulent scales of the eddy structures advecting the air bubbles in the developing shear layer. The length scale Lxz is an integral air–water turbulence length scale which characterized the transverse size of the large vortical structures advecting the air bubbles. The experimental data showed that the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e. Lxz/d1 = 0.2–0.8, with Lxz increasing towards the free-surface.  相似文献   

15.
The results of an experimental investigation of the self-oscillation regimes of liquid jet outflow into a plane channel with air injection in its dead end are presented. The effect of the volume of the cavity, or the air cushion, and its thickness (or channel width) on the flow is studied on a wide range of the gas injection rate and the liquid outflow velocity. The self-oscillation flow regimes are realized at a constant pressure of water in the supply tank and a constant mass flow rate of the air injected into the cushion. With increase in the air injection rate the self-oscillation regime realized at lower injection intensities is replaced by a higher-frequency regime. High-speed videofilming shows that the difference from the low-frequency regime consists in the absence of the direct interaction between the out flowing jet and the channel wall. It is found that in both low-frequency and high-frequency regimes the self-oscillation frequency and amplitude are independent of the cushion thickness but the moment of the regime changeover is determined by this parameter. It is established that there exists a threshold value of the cavity volume, behind which the low-frequency regime does not occur at any air injection rates.  相似文献   

16.
In plunging jet flows and at hydraulic jumps, large quantities of air are entrained at the intersection of the impinging flow and the receiving body of water. The air bubbles are entrained into a turbulent shear layer and strong interactions take place between the air bubble advection/diffusion process and the momentum shear region. New air-water flow experiments were conducted with two free shear layer flows: a vertical supported jet and a horizontal hydraulic jump. The inflows were partially developed boundary layers, characterized by the presence of a velocity potential core next to the entrapment point. In both cases, the distributions of air concentration exhibit a Gaussian distribution profile with an exponential longitudinal decay of the maximum air content. Interestingly, the location of the maximum air content and the half-value band width are identical for both flow situations, i.e. independent of buoyancy effects.  相似文献   

17.
熔喷双槽形喷嘴气体射流流场初探   总被引:1,自引:0,他引:1  
陈廷 《力学季刊》2000,21(4):492-496
在熔喷非织造布加工中,气体射流作为工作介质使聚合物熔体实现拉伸,气体射流流场的研究对熔喷气流拉抻数学模型研究非常重要。熔喷双槽形喷嘴形成的流场可以看作两股平面射流的合成。从单个点涡的性质出发,研究了涡偶的性质和涡偶代替射流的可行性。研究表明,在喷丝孔轴线附近,涡偶和射流的速度分布趋势相同,且有比较相近的速度分布,从而说明以涡偶代替射流是可行的。在此基础上,用两个涡偶分别代替两股射流,然后进行合成,推导出两股射流合成后速度分布的理论公式,该公式的计算结果与实验结果吻合较好。将该公式引入熔喷气流拉伸数学模型,预测出的纤维直径与采用经验公式时的预测结果几乎完全相同。结果表明,应用涡偶代替射流推导出的气流速度分布公式能够较好地描述熔喷双槽形喷嘴气体射流流场,可以用于完善熔喷气流拉伸数学模型。  相似文献   

18.
基于线性稳定性理论,建立了描述同轴旋转可压缩流动中超空化条件下液体射流稳定性的数学模型,并对数学模型及其求解方法进行了验证;在此基础上,对模型中考虑的射流及气体可压缩性、气体同轴旋转以及超空化等因素对射流稳定性的影响进行了分析. 分析结果表明,模型中考虑射流及气体的可压缩性后,与不考虑可压缩性相比,计算得到的射流稳定性明显变差,最小液滴直径减小,分裂液滴直径变化范围变宽,且小液滴数量增多. 气体的同轴旋转在轴对称与非轴对称扰动下对射流稳定性的影响完全相反;轴对称扰动时,气体旋转使射流稳定性增强,而非轴对称扰动时则正好相反;气体旋转有可能导致影响射流稳定性的扰动模式发生根本性变化. 超空化使射流稳定性变差;超空化程度较弱时,超空化使分裂液滴最小直径减小,分裂液滴直径变化范围增大;而超空化达到一定程度后,进一步提高超空化程度,分裂液滴最小直径几乎保持不变.  相似文献   

19.
气枪喷嘴高速射流的除水效率研究   总被引:2,自引:0,他引:2  
为揭示喷嘴除水的机理并进而对气枪喷嘴进行改进和优化设计,本文提出了利用图像分析处理对小尺度气枪喷嘴高速冲击乘风破浪的除水效率的研究方法。该方法将有效除水面积作为衡量喷嘴除水效率的标准,从面实现了对喷嘴整体除水效率的定量测量,并利用该方法对影响气枪喷嘴除水效率的各种因素(一次侧压力,喷嘴到平板的距离和射流攻角)进行了研究,并将实验结果与用热线风速仪及总压探头测量的结果进行了比较,得到冲击射流在平板水平速度分量是蚊蝇 嘴除尘除水效率的决定性因素等结论。  相似文献   

20.
High-velocity free-surface flows are complex two-phase flows and limited information is available about the interactions between air and water for void fractions of about 50%. Herein a detailed experimental study was conducted in the intermediate flow region (C ∼ 50%) on a stepped spillway and the microscopic air–water flow characteristics were investigated. The results showed differences in water and droplet chord times with comparatively larger number of air chord times (0–2 ms), and larger number of water chord times (2–6 ms). A monotonic decrease of particle chord modes was observed with increasing bubble count rates. Several characteristic time scales were identified based upon inter-particle arrival time analyses of characteristic chord time classes as well as spectral analyses of the instantaneous void fraction signal. Chord times of 3–5 ms appeared to be characteristic time scales of the intermediate flow region having similar time scales compared to the local correlation and integral turbulent time scales and to time scales associated with bubble break-up and turbulent velocity fluctuations. A further characteristic time scale of 100 ms was identified in a frequency analysis of instantaneous void fraction. This time scale was of the same order of magnitude as free-surface auto-correlation time scales suggesting that the air–water flow structure was affected by the free-surface fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号