首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A potentially tridentate ligand with an S,N,O donor set, H2L, is formed by the reaction of N-[(diethylaminothiocarbonyl)benzimidoyl chloride with benzoylhydrazine. Reactions of H2L with (NBu4)[MOCl4] complexes (M = Re, Tc) give five-coordinate, neutral oxo complexes of the composition [MOCl(L)].Mixed-ligand complexes of rhenium(V) containing the tridentate L2? ligand and bidentate N,N-dialkyl-N′-benzoylthioureato ligands (R2btu?) are formed in high yields when (NBu4)[ReOCl4] is treated with mixtures of H2L and HR2btu. Another approach to the mixed-ligand products is the reaction of [ReOCl(L)] with an equivalent amount of HR2btu.  相似文献   

2.
Summary Complexes of chromium(III), iron(III), cobalt(III), nickel(II) and copper(II) with salicylaldehyde N(1-piperidyl) thiocarbonyl hydrazone (spthH2), salicylaldehyde N-(1-morpholyl) thiocarbonyl hydrazone (smthH2), 2-hydroxy 4-methyl acetophenone N-(1-piperidyl) thiocarbonyl hydrazone (apthH2) and 2-hydroxy 4-methyl acetophenone N-(1-morpholyl) thiocarbonyl hydrazone (amthH2) have been prepared and characterized by analytical, spectral and magnetic measurements. Mixed ligand complexes of CuII-thiocarbonyl hydrazones and heterocyclic bases have been isolated. Depending on the nature of the metal salts used and the reaction conditions the thiocarbonyl hydrazones act as neutral or dibasic tridentate ligands.  相似文献   

3.
Complexes of novel alkyne-chelating tridentate ligands bound to a rhodium atom were isolated and characterised. The present alkyne-rhodium complex underwent dimerisation simply by heating to afford the unprecedented cyclobutadiene dirhodium complex. It is also found that the ligands at the trans positions influence the π-coordination of alkynes.  相似文献   

4.
Summary Copper(II) complexes with the Schiff bases derived from Salicylaldehyde and its 5-chloro-, 5-bromo-, 5-nitro-, 3-ethoxy- and 3,5-dichloro derivatives, or from 2-hydroxy-1-naphthaldehyde ando-hydroxybenzylamine, have been synthesized and characterized on the basis of elemental analysis, i.r. and electronic spectra and magnetic susceptibility measurements. The Schiff bases behave as tridentate dibasic O, N and O donor ligands and form complexes with 11 metal: ligand stoichiometry which exhibit subnormal magnetic moments ( eff=0.88–0.98 B.M.) and are involved in strong antifer-romagnetic exchange (–J=482–525 cm–1). The complexes exhibit a d-d band atca. 1600 cm–1. A dimeric structure with aminophenolic oxygen atoms as the bridging atoms is proposed on the basis of i.r. and magnetic data.  相似文献   

5.
Electrochemical transformations of antimony(V) complexes containing a tridentate redoxactive ligand, N,N-bis-(2-hydroxy-di-3,5-tert-butylphenyl)amine: R 3Sb(Cat-NH-Cat) (R = (1) Ph; (2) Et), (3) Et2Sb(Cat-N-Cat)) are studied. Electrochemical oxidation of complexes 1, 2 occurs irreversibly leading to formation of unstable radical cations. The next stage is the chemical process resulting in formation of neutral paramagnetic compounds. The Et2Sb(V)(Cat-N-Cat) complex is characterized by two reversible anodic redox processes corresponding to a change of in the ligand redox level. Stable paramagnetic derivatives are formed as a result of electrochemical oxidation of compounds 1, 3; this allows considering these compounds as potential radical scavengers. Interaction of complex 1 with electrogenerated superoxide radical anion led to formation of paramagnetic reaction products.  相似文献   

6.
New dioxouranium(VI) complexes with the tridentate dibasic Schiff bases derived from salicylaldehyde, 5-chlorosalicylaldehyde, 5-bromosalicylaldehyde, 5-nitrosalicylaldehyde, 3,5-dichlorosalicylaldehyde, 4-methoxysalicylaldehyde, 5-methoxysalicylaldehyde, 3-ethoxysalicylaldehyde, 2-hydroxy-1-naphthaldehyde and 2-aminoethanethiol have been synthesised by the reaction of methanolic solution of dioxouranium(VI) acetate dihydrate and the Schiff base. The Schiff bases behave as ONS tridentate donor dibasic ligands. The complexes are of the type UO2L · CH3OH, where LH2 = the tridentate, dibasic Schiff base. The complexes have been characterised on the basis of elemental analysis, infrared and electronic spectra, conductance, magnetic susceptibility and molecular weight measurements. The complexes are diamagnetic, monomers, and octahedral.  相似文献   

7.
The bis-pyridine tridentate ligands (6-R-2-pyridylmethyl)-(2-pyridylmethyl) benzylamine (RDPMA, where R = CH(3), CF(3)), (6-R-2-pyridylmethyl)-(2-pyridylethyl) benzylamine (RPMPEA, where R = CH(3), CF(3)), and the bidentate ligand di-benzyl-(6-methyl-2-pyridylmethyl)amine (BiBzMePMA) have been synthesized and their copper(I) complexes oxidized in a methanol solution to afford self-assembled bis-micro-methoxo-binuclear copper(II) complexes (1, 2, 4, 6) or hydroxo- binuclear copper(II) complexes (3). Oxidation of the nonsubstituted DPMA (R = H) in dichloromethane gives a chloride-bridged complex (5). The crystal structures for [Cu(MeDPMA)(MeO)](2)(ClO(4))(2) (1), [Cu(RPMPEA)(MeO)](2)(ClO(4))(2) (for 2, R= Me, and for 4, R = CF(3)), [Cu(BiBzMePMA)(MeO)](2)(ClO(4))(2) (6), [Cu(FDPMA)(OH)](2)(ClO(4))(2) (3), and [Cu(DPMA)(Cl)](2)(ClO(4))(2) (5) have been determined, and their variable-temperature magnetic susceptibility has been measured in the temperature range of 10-300 K. The copper coordination geometries are best described as square pyramidal, except for 6, which is square planar, because of the lack of one pyridine ring in the bidentate ligand. In 1-4 and 6, the basal plane is formed by two pyridine N atoms and two O atoms from the bridging methoxo or hydroxo groups, whereas in 5, the bridging Cl atoms occupy axial-equatorial sites. Magnetic susceptibility measurements show that the Cu atoms are strongly coupled antiferromagnetically in the bis-methoxo complexes 1, 2, 4, and 6, with -2J > 600 cm(-)(1), whereas for the hydroxo complex 3, -2J = 195 cm(-)(1) and the chloride-bridged complex 5 shows a weak ferromagnetic coupling, with 2J = 21 cm(-)(1) (2J is an indicator of the magnetic interaction between the Cu centers).  相似文献   

8.
Three copper(II) complexes, [Cu(L1)(H2O)(ClO4)]·0.5H2O (1), [Cu(L2)(H2O)(ClO4)]·0.5H2O (2), and [Cu(L2)(NCNC(OCH3)NH2)]ClO4 (3), where HL1 = 4-bromo-2-(-(quinolin-8-ylimino)methyl)phenol and HL2 = 1-(-(quinolin-8-ylimino)methyl)naphthalen-2-ol, have been prepared and characterized by elemental analysis, IR, UV–vis and fluorescence spectroscopy and single-crystal X-ray diffraction studies. The copper(II) centers assume five-coordinate square-pyramidal geometries in 1 and 2, whereas square planar copper(II) is present in 3. A methanol molecule has been inserted in the pendant end of the ligated dicyanamide in 3. Various supramolecular architectures are formed by hydrogen bonding, π?π, C–H?π, and lp?π interactions.  相似文献   

9.
Na[AuCl(4)]·2H(2)O reacts with tridentate thiosemicarbazide ligands, H(2)L1, derived from N-[N',N'-dialkylamino(thiocarbonyl)]benzimidoyl chloride and thiosemicarbazides under formation of air-stable, green [AuCl(L1)] complexes. The organic ligands coordinate in a planar SNS coordination mode. Small amounts of gold(I) complexes of the composition [AuCl(L3)] are formed as side-products, where L3 is an S-bonded 5-diethylamino-3-phenyl-1-thiocarbamoyl-1,2,4-triazole. The formation of the triazole L3 can be explained by the oxidation of H(2)L1 to an intermediate thiatriazine L2 by Au(3+), followed by a desulfurization reaction with ring contraction. The chloro ligands in the [AuCl(L1)] complexes can readily be replaced by other monoanionic ligands such as SCN(-) or CN(-) giving [Au(SCN)(L1)] or [Au(CN)(L1)] complexes. The complexes described in this paper represent the first examples of fully characterized neutral Gold(III) thiosemicarbazone complexes. All the [AuCl(L1)] compounds present a remarkable cell growth inhibition against human MCF-7 breast cancer cells. However, systematic variation of the alkyl groups in the N(4)-position of the thiosemicarbazone building blocks as well as the replacement of the chloride by thiocyanate ligands do not considerably influence the biological activity. On the other hand, the reduction of Au(III) to Au(I) leads to a considerable decrease of the cytotoxicity.  相似文献   

10.
A group of a diverse family of dinuclear copper(II) complexes derived from pyrazole‐containing tridentate N2O ligands, 1,3‐bis(3,5‐dimethylpyrazol‐1‐yl)propan‐2‐ol (Hdmpzpo), 1,3‐bis(3‐phenyl‐5‐methyl pyrazol‐1‐yl)propan‐2‐ol (Hpmpzpo) and 1,3‐bis(3‐cumyl‐5‐methylpyrazol‐1‐yl)propan‐2‐ol (Hcmpzpo), were synthesized and characterized by elemental analysis, IR spectroscopy and three of them also by single‐crystal X‐ray diffraction. Three complexes, [Cu2(pmpzpo)2](NO3)2·2CH3OH ( 3 ·2CH3OH), [Cu2(pmpzpo)2](ClO4)2 ( 4 ) and [Cu2(cmpzpo)2](ClO4)2·2DMF ( 7 ·2DMF), each exhibits a dimeric structure with a inversion center being located between the two copper atoms. The metal ion is coordinated in a distorted square planar environment by two pyrazole nitrogen atoms and two bridging alkoxo oxygen atoms. Both complexes 1 ·CH3OH·H2O and 3 ·2CH3OH were investigated in anaerobic conditions for the catalytic oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ), for modeling the functional properties of catechol oxidase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The ligands, PhPNXMe (1), PhPNXPh (2), and PhPNSMe (3), (PhPNX = 2-Ph2P-C6H4CH[double bond, length as m-dash]NC6H4X-2; X = O, S) have been prepared. A range of new ruthenium complexes were synthesised using these and related ligands, namely: [{RuCl(PhPNO)}2Cl] (4), [Ru(PhPNO)2] (5), [RuCl(PhPNXR)(PPh3)]BPh4 [X = O, R = Me (6); X = O, R = Ph (7); X = S, R = Me (8)], [{RuCl(PhPNX'R)}2Cl]X [X' = O, R = Me, X = Cl(-) (9); X' = S, R = Me, X = BPh4(-) or PF6(-) (10)], and [RuCl(PhPNO-eta 6C6H5)]BPh4 (11). The catalytic activity of these complexes with respect to the hydrosilyation of acetophenone and the hydrogenation of styrene has been investigated, giving an insight into the requirements for an active complex in these reactions.  相似文献   

12.
Summary Reactions of Group VIII metal halides [CoCl2, NiCl2, K2PdCl4, PdCl2(PhCN)2 and PtCl2] with tetrasulphurtetranitrogendioxide, S4N4O2, have been investigated. The cobalt reaction yields Co(S2N2H)2, Co(S2N2H)(S3N) and Co(S3N)2. The usefulness of metal centres for trapping reactive sulphur-nitrogen centres is discussed.  相似文献   

13.
A series of copper(II) complexes, CuL·imidazole, where L2? are tridentate Schiff base ligands formed by condensation of salicylaldehyde with a series of amino acids, have been synthesized. Visible spectral data indicate that copper(II) in these complexes are five coordinate in the solid state and in solution. Electrospray mass spectrometry has been used to show how these complexes react in alcohol/NaOH solutions with and without the presence of d-galactose. In the absence of d-galactose where the amino acid in the ligand is serine, the alcohol group on the ligand is converted to its alkyl ether after sonication of the solution for up to 4?h. In the presence of d-galactose, an alkoxy group is added to the ligands except for the ligand containing serine after sonication of the solutions for up to 4?h. At the same time, d-galactose is oxidized to its aldehyde. Where the ligand contains methionine, oxygen is also added to the ligand, most likely to the thioether sulfur.  相似文献   

14.
Three new mononuclear copper(I) complexes supported by the symmetric ligands 1,1′-methylenebis-1H-pyrazole (BPM), 1,1′-methylenebis(3-methyl-1H-pyrazole) (mBPM), and 1,1′-methylenebis(3,5-di-methyl-1H-pyrazole) (dmBPM) were synthesized as catalytic model systems of tyrosinase. The influence of various functional groups on the catalytic conversion of monophenols is investigated and the formation of the corresponding ortho-quinones is monitored using UV/vis and NMR spectroscopy. Comparison of various monophenols reveals the differences in reactivity which are analyzed and interpreted based on key intermediates of the mechanistic cycle.  相似文献   

15.
Tridentate azomethine ligands with N2O4 and N3donor atoms and their copper complexes were synthesized and characterized. The dimeric structure of copper(II) chelates was confirmed by EXAFS studies. Complexes based on 2-tosylaminobenzaldehyde azomethines tend to undergo ferromagnetic exchange, whereas similar salicylaldehyde derivatives have antiferromagnetic exchange.  相似文献   

16.
The synthesis, characterization and reactivity of ytterbium monochloride supported by tridentate Schiff base ligands are described. The metathesis reaction of anhydrous YbCl3 with 1 equivalent of the sodium salt of a Schiff base, [{LNa(THF)}2] (1) [LH = 3,5-But2-2-(OH)-C6H2CHN-8-C9H6N], gave the ytterbium Schiff base monochloride complex L2YbCl (2). Complex 2 reacted with NaOAr (OAr = OC6H3But-2-Me-4) in a 1:1 molar ratio to form the desired aryloxo derivative L2Yb(OAr) (3). Complex 3 can also be prepared by the one-pot reaction of the Schiff base HL, n-BuLi, YbCl3 and NaOAr in a 2:2:1:1 molar ratio. However, an unprecedented ytterbium aryloxide LL′Yb(OAr) (4) (L′ = 3,5-But2-2-(O)C6H2CH(C4H9)-NH-8-C9H6N) can be isolated in low yield as a byproduct in the later case. Reaction of complex 2 with 1 equivalent of (CH2CH-CH2)MgBr in THF afforded the unexpected complex [Mg(H2N-8-C9H6N)Cl(THF)3]Br (5). Complexes 2-5 were fully characterized by elemental analysis and X-ray diffraction.  相似文献   

17.
The synthesis and characterization of three novel N2O-donor ligands containing the group 4-[1-β-d-2,3,4,6-tetra-O-acetyl-galactosyl)]benzaldehyde are presented. The insertion of this group was designed to increase the absorption of the prodrug in tumor cells, and is part of an ongoing work in our group with tridentate ligands to develop potential cobalt(III) prodrugs. The synthetic route described here allowed the isolation of pure ligands with yields ranged 81–89%. Finally, compounds were characterized by IR, NMR and HRMS (ESI+).  相似文献   

18.
金国新 《高分子科学》2013,31(5):760-768
A series of half-sandwich group IV metal complexes with tridentate monoanionic phenoxy-imine arylsulfide [O NS] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N = CHC 6 H 2 O)](La) and dianionic phenoxy-amine arylsulfide [O N S] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N-CH 2 C 6 H 2 O)] 2(Lb) have been synthesized and characterized.Lb was obtained easily in high yield by reduction of ligand La with excess LiAlH 4 in cool diethyl ether.Half-sandwich Group IV metal complexes CpTi[O NS]Cl 2(1a),CpZr[O NS]Cl 2(1b),CpTi[O N S]Cl(2a),CpZr[O N S]Cl(2b) and Cp * Zr[O N S]Cl(2c) were synthesized by the reactions of La and Lb with CpTiCl 3,CpZrCl 3 and Cp * ZrCl 3,and characterized by IR,1 H-NMR,13 C-NMR and elemental analysis.In addition,an X-ray structure analysis was performed on ligand Lb.The title Group IV half-sandwich bearing tridentate [O,N,S] ligands show good catalytic activities for ethylene polymerization in the presence of methylaluminoxane(MAO) as co-catalyst up to 1.58 × 10 7 g-PE.mol-Zr 1.h 1.The good catalytic activities can be maintained even at high temperatures such as 100 ℃ exhibiting the excellent thermal stability for these half-sandwich metal pre-catalysts.  相似文献   

19.
Two isomeric Schiff bases, HL 1  = 1-[(2-dimethylamino-ethylimino)-methyl]-naphthalen-2-ol and HL 2  = 1-[(2-ethylamino-ethylimino)-methyl]-naphthalen-2-ol, have been used to prepare copper(II) complexes in presence of thiocyanate. HL 1 forms a mononuclear complex [Cu(L 1 )NCS] with terminal thiocyanate, whereas the isomeric Schiff base HL 2 , which is capable of hydrogen bonding, gives a dimeric complex, [Cu2 (L 2 ) 2(NCS)2], with double μ-1,1-NCS bridges. Both complexes are characterized by physico-chemical and spectroscopic methods as well as by single crystal X-ray diffraction studies.  相似文献   

20.
Two anionic tridentate N,O,N' chelators, [pz(Ph)B(mu-pz)(mu-O)B(Ph)pz](-) (3(-)) and [pz(Ph)(Ph)B(mu-pz)(mu-O)B(Ph)pz(Ph)](-) (4(-)), as well as the corresponding complexes [Fe(3)(py)Cl], [Fe(3)Cl(2)] and [Cu(3)Cl], have been synthesised and structurally characterised by X-ray crystallography (pz: pyrazolyl, pz(Ph): 3-phenylpyrazolyl, py: pyridine). Since our synthesis approach takes advantage of the highly modular pyrazolylborate chemistry, inexpensive and relatively resistant N,O,N' ligands of varying steric demand are readily accessible. The complexes [Fe(3)(py)Cl] and [Fe(3)Cl(2)] possess a distorted trigonal-bipyramidal configuration with the pyrazolyl rings occupying equatorial positions and the oxygen donor being located at an apical position. The complex [Cu(3)Cl] crystallises as chloro-bridged dimers featuring Cu(II) ions with ligand environments that are intermediate between a square-planar and a trigonal-bipyramidal geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号