首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The permeability of ions and small polar molecules through polyelectrolyte multilayer capsules templated on red blood cells was studied by means of confocal microscopy and electrorotation. Capsules were obtained by removing the cell after polyelectrolyte multilayer formation by means of NaOCl treatment. This procedure results in cross-linking of poly(allylamine hydrochloride) (PAH) molecules and destroying poly(styrene sulfonate) (PSS) within the multilayer. Capsules are obtained being remarkably different from layer-by-layer (LbL) capsules. These capsules are rather permeable for low as well as for high molecular weight species. However, upon adsorption of extra polyelectrolyte layers the permeability decreased remarkably. The assembly of six supplementary layers of PAH and PSS rendered the capsule almost impermeable for fluorescein. Resealing by supplementary layers is a potential means for filling and release control. By means of electrorotation measurements, it was shown that the capsule walls obtained isolating properties in electrolyte solutions. Conclusions are drawn concerning the mechanism of permeability through cell templated polyelectrolyte multilayer capsules.  相似文献   

2.
The influence of the restricted volume of poly(styrene sulfonate)/poly(allylamine hydrochloride) capsules of different size (2.2, 4.2, and 8.1 microm) on the TiO2-assisted photosynthesis of urea from inorganic precursors (CO2 and NO(3-)) in aqueous solution was demonstrated. Poly(vinyl alcohol) was employed as electron donor to facilitate the photosynthetic process. Decreasing the size of the confined microvolume of polyelectrolyte capsules accelerates the NO(3-) photoreduction, which is a limiting stage of the urea photosynthesis and, correspondingly, increases the efficiency of urea production. The highest yield of urea photosynthesis (37%) was achieved for Cu-modified TiO2 nanoparticles encapsulated inside 2.2 microm poly(styrene sulfonate)/poly(allylamine hydrochloride) capsules.  相似文献   

3.
We describe the formation and permeability of polyelectrolyte multilayer hollow-shell capsules by photo-cross-linking and controlled-release (fluorescence) studies. The hollow shells were prepared by alternate layer-by-layer (LbL) adsorption of photo-cross-linkable benzophenone modified poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) on polystyrene particles, followed by removing the core with tetrahydrofuran. Zeta potential measurements, fourier transform infrared spectroscopy, and transmission electron microscopy were used to verify the LbL process integrity. A model drug, rhodamine B (RB), was successfully loaded into the polyelectrolyte hollow capsules. The release kinetics of RB was investigated using fluorescence spectroscopy. The permeability of RB through the hollow shells was effectively controlled based on UV irradiation time. It was shown that the release of RB molecules can be controlled by the degree of cross-linking induced in the multilayer.  相似文献   

4.
The changes in the morphology and the mechanical properties of hollow polyelectrolyte multilayer capsules made from poly(styrenesulfonate)/poly(allylamine hydrochloride) in response to added salt were investigated. We found that capsules shrink in response to salt exposure. The effect depends strongly on the nature of the salt added and follows trends of the Hoffmeister series, with weakly hydrated cations inducing the strongest shrinking. For NaCl, we have investigated additional effects on capsule mechanical properties that are occurring above a 3 M salt concentration and we found that the morphological changes are accompanied by a pronounced softening of the capsule wall material, which we can quantify by analyzing the force response of capsules in the prebuckling regime. This shows that salts can act as plasticizers in the multilayers and induce annealing effects.  相似文献   

5.
We report the synthesis of poly(acrylic acid-ran-vinylbenzyl acrylate) (PAArVBA), a photo-cross-linkable weak polyelectrolyte, and its incorporation into polyelectrolyte multilayer (PEM) films. PEM films assembled from PAArVBA and poly(allylamine hydrochloride) (PAH) are found to exhibit similar thickness trends with assembly pH as those previously reported for poly(acrylic acid) (PAA)/PAH multilayers. Swelling properties of the as-built and photo-cross-linked films are studied by in situ ellipsometry. Two-dimensional masking techniques are used to pattern regions of high and low swelling, as confirmed by atomic force microscopy (AFM), and to provide spatial control over the low-pH-induced microporosity transition exhibited by PAH/PAA PEMs. Films containing alternating blocks of PAH/PAArVBA bilayers and PAH/PAA bilayers were assembled, laterally photopatterned, and exposed to low-pH solution to generate nanoporosity leading to patterned Bragg reflectors, thereby demonstrating three-dimensional control over film structure in these weak PEM assemblies.  相似文献   

6.
The effect of ultrasonic treatments of different intensity and duration on the integrity and permeability of polyelectrolyte capsules was investigated both in poly(allylamine)/poly(styrene sulfonate) and Fe(3)O(4)/poly(allylamine)/poly(styrene sulfonate) polyelectrolyte capsules. Ultrasonic treatment of polyelectrolyte capsules induces the destruction of the polyelectrolyte shell and the release of the encapsulated material even at short (5 s) sonification times. The presence of magnetite nanoparticles significantly improves the efficiency of the ultrasonically stimulated release of the encapsulated compounds and enables magnetically controlled delivery to the desired site before ultrasonic treatment. Release of the encapsulated compound induced at ultrasonic power comparable to those of ultrasonic generators applied in medicine, demonstrating practical application of the ultrasonically triggered capsule opening in medicine.  相似文献   

7.
Antithrombogenic films with high durability were fabricated in a wet process. Antithrombogenicity was achieved with polyelectrolyte multilayer thin film prepared from poly(vinyl alcohol)-poly(acrylic acid) (PVA-PAA) blends, deposited in alternate layers with poly(allylamine hydrochloride) (PAH). Film durability, assessed by abrasion resistance and water resistance, was enhanced by forming cross-links via amide bonds induced by heat treatment of the film. The film was found to be resistant to protein adsorption, as measured by the amount of fibrinogen adsorbed from an aqueous solution. The antithrombogenic efficacy was assessed in ex vivo experiments by the ability of stainless steel mesh, coated with the polyelectrolyte and inserted into a pig blood vessel, to inhibit thrombus formation. Mesh coated with the polyelectrolyte did not reduce blood flow over a period of 15 min, whereas with uncoated mesh blood flow stopped within 6 min because of blood vessel blockage by thrombus formation.  相似文献   

8.
Size-controlled, low-dispersed calcium carbonate microparticles were synthesized in the presence of the amphiphilic block copolymer polystyrene-b-poly(acrylic acid) (PS-b-PAA) by modulating the concentration of block copolymer in the reactive system. This type of hybrid microparticles have acid-resistant properties. By investigating the aggregation behaviors of PS-b-PAA micelles by transmission electron microscopy (TEM), the mechanism of hybrid calcium carbonate formation illustrated that the block copolymer served not only as "pseudonuclei" for the growth of calcium carbonate nanocrystals, but also forms the supramicelle congeries, a spherical framework, as templates for calcium carbonate nanocrystal growth into hybrid CaCO(3) particles. Moreover, this pilot study shows that the hybrid microparticle is a novel candidate as a template for fabricating multilayer polyelectrolyte capsules, in which the block copolymer is retained within the capsule interior after core removal under soft conditions. This not only facilitates the encapsulation of special materials, but also provides "micelles-enhanced" polyelectrolyte capsules.  相似文献   

9.
研究了胶束增强型聚电解质(PAH/PSS和PADA/PSS)胶囊在不同溶液环境中的形貌变化,发现这种新型的胶囊具有迥异于传统聚电解质胶囊的囊壁结构;研究了二维聚电解质复合膜与模板溶解液中嵌段共聚物PS-b-PAA胶束之间的相互作用,发现胶束层可以通过静电力与聚电解质胶囊囊壁相互作用.同时,模拟模板溶出后聚电解质胶囊内部的环境条件,研究了嵌段共聚物胶束在胶囊内部的存在状态及其在透析过程中的变化规律,认为共聚物可以通过疏水作用沉积于聚电解质复合膜的内壁,并通过Ca2+离子的桥联作用稳定,也就是在聚电解质复合膜层基础上又形成了一层胶束层.即这种胶束增强型聚电解质微胶囊的囊壁是由聚电解质层和胶束层所形成的双层结构.用这种双层结构模型,我们合理解释了胶囊在高盐离子浓度下的形貌变化.  相似文献   

10.
Polyelectrolyte multilayer (PEM) films have been recently applied to surface modification of biomaterials. Cellular interactions with PEM films consisted of weak polyelectrolytes are greatly affected by the conditions of polyelectrolyte deposition, such as pH of polyelectrolyte solution. Previous studies indicated that the adhesion of several types of mammalian cells to PAH/PAA multilayer films was hindered by low pH and high layer numbers. The objective of this study is to evaluate whether the hemocompatibility of polysulfone can be modulated by deposition of poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayer films. PAH/PAA multilayer films with different layer numbers were assembled onto polysulfone at either pH 2.0 or pH 6.5. The number of platelet adhesion and the morphology of adherent platelets were determined to evaluate hemocompatibility of modified substrates. Compared to non-treat polysulfone, the PEM films developed at pH 2.0 decreased platelet adhesion, while those built at pH 6.5 enhanced platelet deposition. Platelet adhesion was found positively correlated to polyclonal antibodies binding to surface-bound fibrinogen. The extent of platelet spreading was increased with layer numbers of PEM films, suggesting that the adherent platelets on thick PEM films were prone to activation. In conclusion, PAH/PAA films with few layers developed at pH 2.0 possessed better hemocompatibility compared to other substrates.  相似文献   

11.
Hollow microcapsules containing polymeric micelles in their walls were fabricated by alternating assembly of poly(allylamine hydrochloride) (PAH) and poly(styrene- b-acrylic acid) (PS- b-PAA) micelles on MnCO(3) microparticles followed by sacrificing the templates in acid solution. The successful formation of PAH/micelle multilayers on both planar and curved substrates was confirmed by UV-vis spectroscopy, ellipsometry, and xi-potential measurements. The PS- b-PAA micelles retained their structure during the whole assembly process. The as-prepared microcapsules showed extraordinary stability against concentrated HCl (37%) and 0.1 M NaOH solutions. No variation in capsule size or shape was observed in acidic solution, while slight swelling and distortion of the capsules took place in alkaline solution. However, these capsules completely recovered their original size and morphology after being incubated in acidic solution again. The microcapsules, in which large voids exist between the micelle grains on the walls, were totally permeable to fluorescein-tagged dextran with an M(w) of 2000 kDa. Assembly of additional PAH/poly(sodium 4-styrenesulfonate) multilayers could substantially reduce the permeation of the same molecules. These multicompartmental capsules combine polymeric micelles with multilayer polyelectrolyte microcapsules and could possibly be imparted with multifunctions, thus possibly finding diverse applications in the fields of drug delivery, biosensing, and nanobiotechnology.  相似文献   

12.
A new approach to fabricate polyelectrolyte microcapsules is based on exploiting porous inorganic microparticles of calcium carbonate. Porous CaCO3 microparticles (4.5-5.0 microns) were synthesized and characterized by scanning electron microscopy and the Brunauer-Emmett-Teller method of nitrogen adsorption/desorption to get a surface area of 8.8 m2/g and an average pore size of 35 nm. These particles were used as templates for polyelectrolyte layer-by-layer assembly of two oppositely charged polyelectrolytes, poly(styrene sulfonate) and poly(allylamine hydrochloride). Calcium carbonate core dissolution resulted in formation ofpolyelectrolyte microcapsules with an internal matrix consisting of a polyelectrolyte complex. Microcapsules with an internal matrix were analyzed by confocal Raman spectroscopy, scanning electron microscopy, force microscopy, and confocal laser-scanning fluorescence microscopy. The structure was found to be dependent on a number of polyelectrolyte adsorption treatments. Capsules have a very high loading capacity for macromolecules, which can be incorporated into the capsules by capturing them from the surrounding medium into the capsules. In this paper, we investigated the loading by dextran and bovine serum albumin as macromolecules. The amount of entrapped macromolecules was determined by two independent methods and found to be up to 15 pg per microcapsule.  相似文献   

13.
The assembled polyelectrolyte nanotubes composed of poly(styrenesulfonate) and poly(allylamine hydrochloride) multilayers by using the layer-by-layer assembly combined with the porous template method can be transformed into capsules by a high-temperature treatment. Scanning electron microscopy and confocal laser scanning microscopy images revealed the whole transition process. The structure transformation of polyelectrolyte multilayers after annealing can be initiated by the input of thermal energy which leads to a breakage of ion pairs between oppositely charged polyelectrolyte groups. The transition process from tubes to capsules is supposed to be driven by the Raleigh instability and leads to the generated polyelectrolyte capsules with different sizes.  相似文献   

14.
The water localization in thin polyelectrolyte multilayers assembled from poly(acrylic acid) and poly(allylamine hydrochloride) was investigated with neutron reflectivity in an atmosphere of controlled humidity and with bulk water. Water was found to be distributed asymmetrically within the multilayer and to localize preferentially at the polymer surface. The diffusion of water into the multilayer did not completely penetrate to the substrate, but instead there appeared to be an exclusion zone near the Si substrate. These results help to explain previous observations of anomalous water transport kinetics in weak polyelectrolyte systems.  相似文献   

15.
The layer by layer deposition process of polyelectrolytes is used to construct films equipped with several compartments containing "free polyelectrolytes". Each compartment corresponds to a stratum of an exponentially growing polyelectrolyte multilayer film, and two consecutive compartments are separated by a stratum composed of a linearly growing multilayer that acts as a barrier preventing polyelectrolyte diffusion from one compartment to another. We use hyaluronic acid/poly(L-lysine) as the system to build the compartments and the poly(styrene sulfonate)/poly(allylamine) system for the barrier. Using confocal microscopy, it is shown that poly(L-lysine) diffuses only within the compartment in which it was initially introduced during the film construction and is thus unable to cross the barriers. Using fluorescein isothiocyanate as a pH indicator, it is also shown that although poly(styrene sulfonate)/poly(allylamine) multilayers act as a barrier for polyelectrolytes, they do not prevent proton diffusion through the film. Such films open the route for multiple functionalization of biomaterial coatings.  相似文献   

16.
In this paper, novel hollow polyelectrolyte multilayer tubes from poly(diallyldimethylammonium chloride) (PDADMAC), poly(styrene sulfonate) (PSS), and poly(allylamine hydrochloride) (PAH) were prepared: Readily available glass fiber templates are coated with polyelectrolytes using the layer-by-layer technique, followed by subsequent fiber dissolution. Depending on the composition of the polymeric multilayer, stable hollow tubes or tubes showing a pearling instability are observed. This instability corresponds to the Rayleigh instability and is a consequence of an increased mobility of the polyelectrolyte chains within the multilayer. The well-defined stable tubes were characterized with fluorescence microscopy, confocal laser scanning microscopy, and atomic force microscopy (AFM). The tubes were found to be remarkably free of defects, which results in an impermeable tube wall for even low molecular weight molecules. The mechanical properties of the tubes were determined with AFM force spectroscopy in water, and because continuum mechanical models apply, the Young's modulus of the wall material was determined. Additionally, scaling relations for the dependency of tube stiffness on diameter and wall thickness were validated. Because both parameters can be experimentally controlled by our approach, the deformability of the tubes can be varied over a broad range and adjusted for the particular needs.  相似文献   

17.
The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine-tuning of the gel swelling and responsive behavior according to the mobility of the assembled polyelectrolyte (PE) pair and the composition of the outermost layer. Microbeads with well-defined morphology were initially prepared by synthesis in supercritical carbon dioxide. Upon LbL assembly of polyelectrolytes, interactions between the multilayers and the soft porous microgel led to differences in swelling and thermoresponsive behavior. For the weak PE pairs, namely poly(L-lysine)/poly(L-glutamic acid) and poly(allylamine hydrochloride)/poly(acrylic acid), polycation-terminated microgels were less swollen and more thermoresponsive than native microgel, whereas polyanion-terminated microgels were more swollen and not significantly responsive to temperature, in a quasi-reversible process with consecutive PE assembly. For the strong PE pair, poly(diallyldimethylammonium chloride)/poly(sodium styrene sulfonate), the differences among polycation and polyanion-terminated microgels are not sustained after the first PE bilayer due to extensive ionic cross-linking between the polyelectrolytes. The tendencies across the explored systems became less noteworthy in solutions with larger ionic strength due to overall charge shielding of the polyelectrolytes and microgel. ATR FT-IR studies correlated the swelling and responsive behavior after LbL assembly on the microgels with the extent of H-bonding and alternating charge distribution within the gel. Thus, the proposed LbL strategy may be a simple and flexible way to engineer smart microgels in terms of size, surface chemistry, overall charge and permeability.  相似文献   

18.
Interpolyelectrolyte complex (IPEC) formation between poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) has been studied over a range of ionic strengths by isothermal titration calorimetry (ITC), turbidity titration, and electrostatic layer-by-layer assembly (ELBL). The results indicate that IPEC formation of PSS/PAH in aqueous solution is predominantly entropy-driven. The thermodynamic parameters suggest the formation of different types of complexes and aggregates due to salt-induced conformational changes in the polyelectrolyte conformation. Differences in polyelectrolyte behavior in the different salt-concentration regimes are described in terms of changes in the Debye screening length of the polyelectrolytes. The relationship of the results to the effect of salt concentration on the assembly of polyelectrolyte multilayer films (PEMs) is discussed.  相似文献   

19.
Application of polyelectrolyte multilayer (PEM) capsules as vehicles for the controlled delivery of substances, such as drugs, genes, pesticides, cosmetics, and foodstuffs, requires a sound understanding of the permeability of the capsules. We report the results of a detailed investigation into probing capsule permeability via a molecular beacon (MB) approach. This method involves preparing MB-functionalized bimodal mesoporous silica (BMSMB) particles, encapsulating the BMSMB particles within the PEM film to be probed, and then incubating the encapsulated BMSMB particles with DNA target sequences of different lengths. Permeation of the DNA targets through the capsule shell causes the immobilized MBs to open due to hybridization of the DNA targets with the complementary loop region of the MBs, resulting in an increase in the MB fluorescence. The assay conditions (BMSMB particle concentration, MB loading within the BMS particles, DNA target concentration, DNA target size, pH, sodium chloride concentration) where the MB-DNA sensing process is effective were first examined. The permeability of DNA through poly(sodium 4-styrenesulfonate) (PSS)/poly(allylamine hydrochloride) (PAH) multilayer films, with and without a poly(ethyleneimine) (PEI) precursor layer, was then investigated. The permeation of the DNA targets decreases considerably as the thickness of the PEM film encapsulating the BMSMB particles increases. Furthermore, the presence of a PEI precursor layer gives rise to less permeable PSS/PAH multilayers. The diffusion coefficients calculated for the DNA targets through the PEM capsules range from 10-19 to 10-18 m2 s-1. This investigation demonstrates that the MB approach to measuring permeability is an important new tool for the characterization of PEM capsules and is expected to be applicable for probing the permeability of other systems, such as membranes, liposomes, and emulsions.  相似文献   

20.
Polyelectrolyte capsules were fabricated by layer-by-layer deposition of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) on glutardialdehyde fixed human erythrocytes and subsequent core dissolution using NaOCl as an oxidizing agent. SANS together with confocal laser scanning microscopy (CLSM) were applied to study capsule topology and interior as well as the layer thickness as a function of the deposition protocol, layer number, ionic concentration, and temperature treatment. The capsules contained various amounts of trapped polyelectrolyte. Retention depended on the order of polyelectrolyte deposition and layer number, which influenced layer permeability. The capsule wall thickness was found to be much smaller (3-4.5 nm in total) than what was known for polyelectrolyte multilayer walls, where every single layer contributes about 1.8 nm to the total thickness. NaCl (0.1 mM) caused a layer thickness decrease by 16%. Annealing at 70 degrees C induced capsule shrinking together with an increase of the wall thickness by 85% and wall density by 12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号