首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The magnetic structure of MnF2 is determined by the neutron diffraction method in the metastable orthorhombic phase grown in the form of thin (~1 μm) film on a CaF2 buffer layer by the molecular beam epitaxy method. The magnetic moments of Mn++ form a simple two-sublattice antiferromagnetic structure and are directed along the c crystallographic axis parallel to the film plane. Using the temperature dependence of magnetic reflections, a Néel temperature of 67.19(7) K and a critical index of 0.50(2), which corresponds to the mean field approximation, are determined.  相似文献   

4.
Two types of mechanisms are proposed for mound coarsening during unstable epitaxial growth: stochastic, due to deposition noise, and deterministic, due to mass currents driven by surface energy differences. Both yield the relation H=(RWL)2 between the typical mound height W, mound size L, and the film thickness H. An analysis of simulations and experimental data shows that the parameter R saturates to a value which discriminates sharply between stochastic () and deterministic () coarsening. We derive a scaling relation between the coarsening exponent 1/z and the mound-height exponent which, for a saturated mound slope, yields . Received: 11 November 1997 / Revised in final form: 28 November 1997 / Accepted: 28 November 1997  相似文献   

5.
We investigate submonolayer epitaxial growth with a fixed monomer flux and irreversible aggregation of adatom islands due to an effective island diffusion, with a diffusivity for an mass k island proportional to . For , there is a steady state, while for , continuously evolving logarithmic islanding occurs in which the island density grows extremely slowly, as . In the latter regime, the island size distribution exhibits complex, but universal, multiple-scale mass dependence which we account for theoretically. Received: 3 June 1998 / Accepted: 13 July 1998  相似文献   

6.
The typical island distance in submonolayer epitaxial growth depends on the growth conditions via an exponent . This exponent is known to depend on the substrate dimensionality, the dimension of the islands, and the size i* of the critical nucleus for island formation. In this paper we study the dependence of on i* in one-dimensional epitaxial growth. We derive that for and confirm this result by computer simulations. Received: 26 May 1998 / Accepted: 23 June 1998  相似文献   

7.
G P Das 《Pramana》1992,38(6):545-639
Metal-semiconductor (Schottky barrier) and semiconductor-semiconductor (heterojunction) interfaces show rectifying barrier heights and band offsets, which are two key quantities required to optimize the performance of a device. A large number of models and empirical theories have been put forward by various workers in the field during the last 50 years. But a proper understanding of the microscopic origin of these quantities is still missing. In this article, our focus is mainly to present a unified framework for first principles investigation of the electronic structure of epitaxial interfaces, in which one of the constituents is a semiconductor. LMTO method is now a well established tool for self-consistent electronic structure calculations of solids within LDA. Such calculations, when performed on supercell geometries, are quite successful in predicting a wide range of interface specific electronic properties accurately and efficiently. We describe here the basic formalism of this LMTO-supercell approach in its various levels of sophistication and apply it to investigate the electronic structure of A- and B-type NiSi2/Si(111) interface as a prototype metal-semiconductor system, and CaF2/Si(111) interface as a prototype insulator-semiconductor system. These are a few of the most ideal lattice matched epitaxial interfaces whose atomic and electronic structures have been extensively studied using a wide range of experimental probes. We give here a glimpse of these experimental results and discuss the success as well as limitations of LDA calculations to achieve accuracies useful for the device physicists.  相似文献   

8.
9.
10.
11.
We have observed, by use of low-energy electron microscopy, the first direct evidence of self-driven polycrystallization evolved from a single nucleus in the case of epitaxial pentacene growth on the Si(111)-H terminated surface. In this Letter we demonstrate that such polycrystallization can develop in anisotropic systems (in terms of crystal structure and/or the intermolecular interactions) when kinetic growth conditions force the alignment of the intrinsic preferential growth directions along the density gradient of diffusing molecules. This finding gives new insight into the crystallization of complex molecular systems, elucidating the importance of nanoscale control of the growth conditions.  相似文献   

12.
We have studied the scaling properties of diffusion fronts by numerical calculations based on the mean field approach in the context of a lattice gas model, performed in a triangular lattice. We find that the height-height correlation function scales with time t and length l as C(l, t) ≈l α f (t/l α/β) with α = 0.62±0.01 and β = 0.39±0.02. These exponent values are identical to those characterising the roughness of the diffusion fronts evolving through a square lattice [1,2], thus confirming their universality. Received 14 November 2001 / Received in final form 20 April 2002 Published online 31 July 2002  相似文献   

13.
14.
15.
Metal organic vapour phase epitaxy (MOVPE) is nowadays one of the leading techniques for epitaxial growth. While the processes in the gas phase of MOVPE are reasonably well understood, the processes on the growing surface are not. This situation is in contrast to molecular beam epitaxy (MBE), where considerable knowledge about growth processes on the surface could be gained. The main reason is that all the UHV-based classical surface-science tools (using electrons and ions), especially reflection high-energy electron diffraction, can be applied in the vacuum-based MBE but not under the gas-phase conditions of MOVPE. This situation has changed in the last decade since optical surface-science tools have been developed. Especially, with the linear optical techniques like reflectance anisotropy spectroscopy and spectroscopic ellipsometry, there is now a quasi-standard tool at hand which allows for the study of all kinds of pregrowth and growth situations in MOVPE (in MBE of course, as well). These optical methods give, moreover, chemical information also. In this article we will describe shortly the features of these optical techniques and then concentrate on III-V-semiconductor growth. The spectral definition of surface reconstructions and time-resolved studies of phase transitions between them (adsorption/desorption kinetics of group-III and group-V elements) are discussed next. Under growth, the surfaces can be classified and defined according to their optical surface response into a pressure versus temperature phase diagram. The regions of such a phase diagram correspond to different geometrical and chemical surface structures and consequently lead to different growth modes. Finally, as an example of modern nanogrowth, monitoring of the growth of quantum-dot structures is presented. Received: 2 August 2001 / Accepted: 23 October 2001 / Published online: 3 April 2002  相似文献   

16.
张韵  谢自力  王健  陶涛  张荣  刘斌  陈鹏  韩平  施毅  郑有炓 《物理学报》2013,62(5):56101-056101
利用高分辨率X射线衍射(HRXRD)对MOCVD系统中生长在c面Al2O3上的不 同厚度的GaN薄膜内马赛克结构进行了研究. 在对称面的三轴X射线衍射曲线中, 用两种方法计算得到晶粒的垂直关联长度和水平关联长度, 两者均随着薄膜厚度的增加而增加, 并且垂直关联长度近似膜厚从倒易空间图中得出的横向关联长度也有相同的趋势, 结合非对称面的衍射曲线用Williamson-Hall方法和外推法分 别拟合出晶粒的面外倾斜角和面内扭转角, 他们随着薄膜厚度的增加显著减少, 这一切都表明厚度的增加, 晶粒的单向有序排列越来越整齐, 外延片的质量越来越高. 关键词: GaN薄膜马赛克结构 厚度 HRXRD  相似文献   

17.
18.
19.
20.
We examine the step dynamics in a 1+1-dimensional model of epitaxial growth based on the BCF-theory. The model takes analytically into account the diffusion of adatoms, an incorporation mechanism and an Ehrlich-Schwoebel barrier at step edges. We find that the formation of mounds with a stable slope is closely related to the presence of an incorporation mechanism. We confirm this finding using a solid-on-solid model in 2+1 dimensions. In the case of an infinite step edge barrier we are able to calculate the saturation profile analytically. Without incorporation but with inclusion of desorption and detachment we find a critical flux for instable growth but no slope selection. In particular, we show that the temperature dependence of the selected slope is solely determined by the Ehrlich-Schwoebel barrier which opens a new possibility in order to measure this fundamental barrier in experiments. Received 11 May 1999 and Received in final form 6 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号