首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this Letter we point out that in a class of models for spontaneous R-parity breaking based on gauged B−LBL, the spectrum for neutrinos is quite peculiar. We find that those models generally predict three layers of neutrinos: one heavy sterile neutrino, two massive active neutrinos, and three nearly massless (one active and two sterile) neutrinos.  相似文献   

2.
Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the Universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale cosmic microwave background observations from ACBAR, BICEP, and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m{s} and effective number N{s} of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, if m{s} is in the sub-eV range.  相似文献   

3.
4.
A generalized model involving three active neutrinos and three sterile neutrinos of different mass, one being relatively heavy [(3 + 1 + 2) model], is considered on the basis of experimental data, which admit the existence of anomalies beyond the minimally extended standard model featuring three active neutrinos of different mass. Basic properties used to describe massive active and sterile neutrinos are studied along with methods for determining the absolute scale of neutrino masses and for estimating neutrino masses on the basis of available experimental data. In the approximation of CP conservation, admissible values of the elements of the neutrino mass matrix are found from numerical calculations versus the possible values of the mass of one of the sterile neutrinos. The dependences of the mass properties of the neutrinos on the sterile-neutrino mass are constructed with allowance for possible sterile-neutrino contributions. The respective results can be used to interpret and predict results of various neutrino experiments.  相似文献   

5.
Motivated by the tentative observation of superluminal neutrinos by the OPERA experiment, we present a model of active-sterile neutrino oscillations in which sterile neutrinos are superluminal and active neutrinos appear superluminal by virtue of neutrino mixing. The model demonstrates some interesting possibilities and challenges that apply to a large class of models aiming to explain the OPERA result.  相似文献   

6.
We propose the inverse seesaw mechanism as a way to understand small Majorana masses for neutrinos in warped extra dimension models with seesaw scale in the TeV range. The ultra-small lepton number violation needed in implementing inverse seesaw mechanism in 4D models is explained in this model as a consequence of lepton number breaking occurring on the Planck brane. We construct realistic models based on this idea that fit observed neutrino oscillation data for both normal and inverted mass patterns. We compute the corrections to light neutrino masses from the Kaluza-Klein modes and show that they are small in the parameter range of interest. Another feature of the model is that the absence of global parity anomaly implies the existence of at least one light sterile neutrino with sterile and active neutrino mixing in the range suggested by the LSND and MiniBooNE observations.  相似文献   

7.
New predictions for the antineutrino flux from nuclear reactors suggest that reactor experiments may have measured a deficit in this flux, which can be interpreted in terms of oscillations between the known active neutrinos and new sterile states. We perform a reanalysis of global short-baseline neutrino oscillation data in a framework with one or two sterile neutrinos. While one sterile neutrino is still not sufficient to reconcile the signals suggested by reactor experiments and by the LSND and MiniBooNE experiments with null results from other searches, we find that, with the new reactor flux prediction, the global fit improves considerably when two sterile neutrinos are introduced.  相似文献   

8.
We identify the range of parameters for which the sterile neutrinos can simultaneously explain the cosmological dark matter and the observed velocities of pulsars. To satisfy all cosmological bounds, the relic sterile neutrinos must be produced sufficiently cold. This is possible in a class of models with a gauge-singlet Higgs boson coupled to the neutrinos. Sterile dark matter can be detected by the x-ray telescopes. The presence of the singlet in the Higgs sector can be tested at the CERN Large Hadron Collider.  相似文献   

9.
We present here a scenario, based on a low reheating temperature T(R)<100 MeV at the end of (the last episode of) inflation, in which the coupling of sterile neutrinos to active neutrinos can be as large as experimental bounds permit (thus making this neutrino "visible" in future experiments). In previous models this coupling was forced to be very small to prevent a cosmological overabundance of sterile neutrinos. Here the abundance depends on how low the reheating temperature is. For example, the sterile neutrino required by the Liquid Scintillator Neutrino Detector result may not have any cosmological problem within our scenario.  相似文献   

10.
We present a formalism that allows the computation of the lepton asymmetry of the universe from first principles of statistical physics and quantum field theory (this lepton asymmetry is then converted to a baryon asymmetry via sphaleron processes). This formalism includes a thermal bath of Standard Model particles (active neutrinos) coupled to a new sector that is out-of-equilibrium (sterile neutrinos). The key point that allows a first principles computation is that the number of sterile neutrinos produced during the relevant cosmological period remains small (we assume zero sterile neutrinos initially). In such a case, it is possible to expand the formal solution of Liouville's equation perturbatively and obtain a master formula for the lepton asymmetry expressed in terms of non-equilibrium Wightman functions. The master formula neatly separates CP-violating contributions from finite temperature correlation functions and satisfies all three Sakharov conditions. These correlation functions can then be evaluated perturbatively; the validity of the perturbative expansion depends on the parameters of the model considered. Here we choose the νMSM (i.e. a minimal extension of the Standard Model that includes three generations of sterile neutrinos with masses of the order of the electroweak scale) to illustrate the use of the formalism, but it could in principle be applied to other models.  相似文献   

11.
The standard Big Bang cosmology predicts that the universe is abundantly populated with neutrinos. As expected there are at least 114 neutrinos per cubic centimeter averaged over the whole space. Like the cosmic background radiation the cosmic neutrinos at present posses a very small kinetic energy due to expansion of the universe. This prediction is one of the cornerstones of modern cosmology. On the other hand the existence of cosmic neutrinos has not yet been confirmed by direct detection experiments. For now we only have a lower limit on the total mass of this free floating ghostly gas of neutrinos, but even so it is roughly equivalent to the total mass of all the visible stars in universe. There could be many more neutrinos at Earth because of condensation of neutrinos, now moving slowly under the gravitational pull of our galaxy. Here we discuss the possibility of detection of relic neutrinos in KATRIN and MARE experiments via neutrino capture on tritium and rhenium, respectively. We also examine single and double relic neutrino capture on double β-decaying nuclei which might be relevant in the context of the new generation double beta decay experiments. Further we explore feasibility of experiments for detection of heavy sterile neutrinos with masses in MeV region, which may have important astrophysical and cosmological implications.  相似文献   

12.
Models with low-scale breaking of global symmetries in the neutrino sector provide an alternative to the seesaw mechanism for understanding why neutrinos are light. Such models can easily incorporate light sterile neutrinos required by the Liquid Scintillator Neutrino Detector experiment. Furthermore, the constraints on the sterile neutrino properties from nucleosynthesis and large-scale structure can be removed due to the nonconventional cosmological evolution of neutrino masses and densities. We present explicit, fully realistic supersymmetric models, and discuss the characteristic signatures predicted in the angular distributions of the cosmic microwave background.  相似文献   

13.
A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal activeneutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a2 type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.  相似文献   

14.
The experimental rate of neutrinoless double beta decay can be saturated by the exchange of virtual sterile neutrinos, that mix with the ordinary neutrinos and are heavier than 200 MeV. Interestingly, this hypothesis is subject only to marginal experimental constraints, because of the new nuclear matrix elements. This possibility is analyzed in the context of the Type I seesaw model, performing also exploratory investigations of the implications for heavy neutrino mass spectra, rare decays of mesons as well as neutrino-decay search, LHC, and lepton flavor violation. The heavy sterile neutrinos can saturate the rate only when their masses are below some 10 TeV, but in this case, the suppression of the light-neutrino masses has to be more than the ratio of the electroweak scale and the heavy-neutrino scale; i.e., more suppressed than the naive seesaw expectation. We classify the cases when this condition holds true in the minimal version of the seesaw model, showing its compatibility (1) with neutrinoless double beta rate being dominated by heavy neutrinos and (2) with any light neutrino mass spectra. The absence of excessive fine-tunings and the radiative stability of light neutrino mass matrices, together with a saturating sterile neutrino contribution, imply an upper bound on the heavy neutrino masses of about 10 GeV. We extend our analysis to the Extended seesaw scenario, where the light and the heavy sterile neutrino contributions are completely decoupled, allowing the sterile neutrinos to saturate the present experimental bound on neutrinoless double beta decay. In the models analyzed, the rate of this process is not strictly connected with the values of the light neutrino masses, and a fast transition rate is compatible with neutrinos lighter than 100 meV.  相似文献   

15.
The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter–antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.  相似文献   

16.
We report the result of a search for sterile neutrinos with the latest cosmological observations. Both cases of massless and massive sterile neutrinos are considered in the \(\Lambda \)CDM cosmology. The cosmological observations used in this work include the Planck 2015 temperature and polarization data, the baryon acoustic oscillation data, the Hubble constant direct measurement data, the Planck Sunyaev–Zeldovich cluster counts data, the Planck lensing data, and the cosmic shear data. We find that the current observational data give a hint of the existence of massless sterile neutrino (as dark radiation) at the 1.44\(\sigma \) level, and the consideration of an extra massless sterile neutrino can indeed relieve the tension between observations and improve the cosmological fit. For the case of massive sterile neutrino, the observations give a rather tight upper limit on the mass, which implies that actually a massless sterile neutrino is more favored. Our result is consistent with the recent result of neutrino oscillation experiment done by the Daya Bay and MINOS collaborations, as well as the recent result of cosmic ray experiment done by the IceCube collaboration.  相似文献   

17.
OPERA has claimed the discovery of superluminal propagation of neutrinos. We analyze the consistency of this claim with previous tests of special relativity. We find that reconciling the OPERA measurement with information from SN1987a and from neutrino oscillations requires stringent conditions. The superluminal limit velocity of neutrinos must be nearly flavor independent, must decrease steeply in the low-energy domain, and its energy dependence must depart from a simple power law. We construct illustrative models that satisfy these conditions, by introducing Lorentz violation in a sector with light sterile neutrinos. We point out that, quite generically, electroweak quantum corrections transfer the information of superluminal neutrino properties into Lorentz violations in the electron and muon sector, in apparent conflict with experimental data.  相似文献   

18.
This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.  相似文献   

19.
It is shown that future solar neutrino experiments (SNO, Super-Kamiokande and others), in which high energy neutrinos will be detected (mostly from 8B decay), may allow to answer in a model independent way the question whether there are transitions of solar ve's into sterile states. No assumptions about the initial flux of 8B neutrinos are made. Lower bounds for the probability of transition of solar ve's into all sterile states are derived and expressed through measurable quantities.  相似文献   

20.
The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to neutral currents and matter effects. We find no evidence favoring sterile neutrinos, and reject the hypothesis at the 99% confidence level. On the other hand, we find that oscillation between muon and tau neutrinos suffices to explain all the results in hand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号