首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the “teleparallel” equivalent of General Relativity as the gravitational sector, which is based on torsion instead of curvature, we add a canonical scalar field, allowing for a nonminimal coupling with gravity. Although the minimal case is completely equivalent to standard quintessence, the nonminimal scenario has a richer structure, exhibiting quintessence-like or phantom-like behavior, or experiencing the phantom-divide crossing. The richer structure is manifested in the absence of a conformal transformation to an equivalent minimally-coupled model.  相似文献   

2.
In a recently proposed scenario for primordial inflation, where the Standard Model (SM) Higgs boson plays a role of the inflation field, an effective field theory (EFT) approach is the most convenient for working out the consequences of breaking of perturbative unitarity, caused by the strong coupling of the Higgs field to the Ricci scalar. The domain of validity of the EFT approach is given by the ultraviolet (UV) cutoff, which, roughly speaking, should always exceed the Hubble parameter in the course of inflation. On the other hand, applying the trusted principles of quantum gravity to a local EFT demands that it should only be used to describe states in a region larger than their corresponding Schwarschild radius, manifesting thus a sort of UV/IR correspondence. We consider both constraints on EFT, to ascertain which models of the SM Higgs inflation are able to simultaneously comply with them. We also show that if the gravitational coupling evolves with the scale factor, the holographic constraint can be alleviated significantly with minimal set of canonical assumptions, by forcing the said coupling to be asymptotically free.  相似文献   

3.
We construct a warm inflation model with inflaton field non-minimally coupled to induced gravity on a warped DGP brane. We incorporate possible modification of the induced gravity on the brane in the spirit of f(R)-gravity. We study cosmological perturbations in this setup. In the case of two field inflation such as warm inflation, usually entropy perturbations are generated. While it is expected that in the case of one field inflation these perturbations to be removed, we show that even in the absence of the radiation field, entropy perturbations are generated in our setup due to non-minimal coupling and modification of the induced gravity. We study the effect of dissipation on the inflation parameters of this extended braneworld scenario.  相似文献   

4.
A theoretical analysis of solutions of renormalization group equations in the minimal supersymmetric standard model, which lead to a quasi-fixed point has shown that the mass of the lightest Higgs boson in these models does not exceed 94 ± 5 GeV. This implies that a considerable part of the parameter space in the minimal supersymmetric model is in fact eliminated by existing LEPII experimental data. In the nonminimal supersymmetric standard model the upper bound on the mass of the lightest Higgs boson reaches its maximum in the strong Yukawa coupling regime when the Yukawa constants are substantially greater than the gauge constants on the grand unification scale. In the present paper the particle spectrum is studied using the simplest modification of the nonminimal supersymmetric standard model which gives a self-consistent solution in this region of parameter space. This model can give m h ~ 125 GeV even for comparatively low values of β ≥ 1.9. The spectrum of Higgs bosons and neutralinos is analyzed using the method of diagonalizing mass matrices proposed earlier. In this model the mass of the lightest Higgs boson does not exceed 130.5 ± 3.5 GeV.  相似文献   

5.
We study the spontaneous symmetry breaking in a conformally invariant gravitational theory. We particularly emphasize on the nonminimal coupling of matter fields to gravity. By the nonminimal coupling we consider a local distinction between the conformal frames of metric of matter fieldsand the metric explicitly entering the vacuum sector. We suppose that these two frames are conformally related by a dilaton field. We show that the imposition of a condition on the variable mass term of a scalar field may lead to the spontaneous symmetry breaking. In this way the scalar field may imitate the Higgs field behavior. Attributing a constant configuration to the ground state of the Higgs field, a Higgs conformal frame is specified. We define the Higgs conformal frame as a cosmological frame which describes the large scale characteristics of the observed universe. In the cosmological frame the gravitational coupling acquires a correct value and one no longer deals with the vacuum energy problem. We then study a more general case by considering a variable configuration for the ground state of Higgs field. In this case we introduce a cosmological solution of themodel.  相似文献   

6.
In this paper,we introduce a square term of the curvature scale R in the strong gravity Lagrange with de-Sitter form,the square term has made the coupling coefficient of strong gravity Gf to decrease,it can get a reasonable strong gravity model and avoid singularity.  相似文献   

7.
We show that the shift of quantum mechanical phase can depend on the nonminimal coupling of scalar-tensor gravity. This fact could constitute a further test to discriminate among the various relativistic theories of gravity. Consequences on atmospheric, solar and astrophysical neutrinos are discussed.  相似文献   

8.
9.
The structure of quantum field theory renormalization in curved space-time is investigated. The equations allowing us to investigate the behaviour of vacuum energy and vertex functions in the limit of small distances in the external gravitational field are established. The behaviour of effective charges corresponding to the parameters of nonminimal coupling of the matter with the gravitational field is studied and the conditions under which asymptotically free theories become asymptotically conformally invariant are found. The examples of asymptotically conformally invariant theories are given. On the basis of a direct solution of renormalization group equations the effective potential in the external gravitational field and the effective action in the gravity with the high derivatives are obtained. The expression for the cosmological constant in terms of R2-gravity Lagrangian parameters is given which does not contradict the observable data. Renormalization and renormalization group equations for the theory in curved space-time with torsion are investigated.  相似文献   

10.
In this letter, cosmology of a simple NMDC gravity with \(\xi R \phi _{,\mu }\phi ^{,\mu }\) term and a free kinetic term is considered in flat geometry and in presence of dust matter. A logarithm field transformation \(\phi ' = \mu \ln \phi \) is proposed phenomenologically. Assuming slow-roll approximation, equation of motion, scalar field solution and potential are derived as function of kinematic variables. The field solution and potential are found straightforwardly for power-law, de-Sitter and super-acceleration expansions. Slow-roll parameters and slow-roll condition are found to depend on more than one variable. At large field the re-scaling effect can enhance the acceleration. For slow-rolling field, the negative coupling \(\xi \) could enhance the effect of acceleration.  相似文献   

11.
The Schramm-Loewner evolution (SLE) is a powerful tool to describe fractal interfaces in 2D critical statistical systems, yet the application of SLE is well established for statistical systems described by quantum field theories satisfying only conformal invariance, the so-called minimal conformal field theories (CFTs). We consider interfaces in Z(N) spin models at their self-dual critical point for N = 4 and N = 5. These lattice models are described in the continuum limit by nonminimal CFTs where the role of a ZN symmetry, in addition to the conformal one, should be taken into account. We provide numerical results on the fractal dimension of the interfaces which are SLE candidates for nonminimal CFTs. Our results are in excellent agreement with some recent theoretical predictions.  相似文献   

12.
We study the unitarity of models with low scale quantum gravity both in four dimensions and in models with a large extra-dimensional volume. We find that models with low scale quantum gravity have problems with unitarity below the scale at which gravity becomes strong. An important consequence of our work is that their first signal at the Large Hadron Collider would not be of a gravitational nature such as graviton emission or small black holes, but rather would be linked to the mechanism which fixes the unitarity problem. We also study models with scalar fields with non-minimal couplings to the Ricci scalar. We consider the strength of gravity in these models and study the consequences for inflation models with non-minimally coupled scalar fields. We show that a single scalar field with a large non-minimal coupling can lower the Planck mass in the TeV region. In that model, it is possible to lower the scale at which gravity becomes strong down to 14 TeV without violating unitarity below that scale.  相似文献   

13.
The possibility of having an inflationary epoch within a noncommutative geometry approach to unifying gravity and the Standard Model is demonstrated. This inflationary phase occurs without the need to introduce ad hoc additional fields or potentials, rather it is a consequence of a nonminimal coupling between the geometry and the Higgs field.  相似文献   

14.
15.
《Physics letters. [Part B]》1987,193(4):427-432
In the framework of the gauge-invariant formalism the problem of the evolution of adiabatic perturbations in the metric for the theory of gravity with higher derivatives, which contains inflation, has been solved. The results are compared with the case when inflation arises due to a scalar field. The restrictions on the parameters of the models are given.  相似文献   

16.
Some properties of minimal and nonminimal vector interactions in the Duffin-Kemmer-Petiau (DKP) formalism are discussed. The conservation of the total angular momentum for spherically symmetric nonminimal potentials is derived from its commutation properties with each term of the DKP equation and the proper boundary conditions on the spinors are imposed. It is shown that the space component of the nonminimal vector potential plays a crucial role for the confinement of bosons. The exact solutions for the vector DKP oscillator (nonminimal vector coupling with a linear potential which exhibits an equally spaced energy spectrum in the weak-coupling limit) for spin-0 bosons are presented in a closed form and it is shown that the spectrum exhibits an accidental degeneracy.  相似文献   

17.
We construct black hole solutions to Einstein-Born-Infeld gravity with a cosmological constant. Since an elliptic function appears in the solutions for the metric, we construct horizons numerically. The causal structure of these solutions differs drastically from their counterparts in Einstein-Maxwell gravity with a cosmological constant. The charged de-Sitter black holes can have up to three horizons and the charged anti-de Sitter black hole can have one or two depending on the parameters chosen.  相似文献   

18.
In this paper we show that power-law inflation can be realized in non-minimal gravitational coupling of Yang–Mills field with a general function of the Gauss–Bonnet invariant in the framework of Einstein gravity. Such a non-minimal coupling may appear due to quantum corrections. We also discuss the non-minimal Yang–Mills-f(G) gravity in the framework of modified Gauss–Bonnet action which is widely studied recently. It is shown that both inflation and late-time cosmic acceleration are possible in such a theory.  相似文献   

19.
This paper determines the existence of Noether symmetry in non-minimally coupled f(RT) gravity admitting minimal coupling with scalar field models. We consider a generalized spacetime which corresponds to different anisotropic and homogeneous universe models. We formulate symmetry generators along with conserved quantities through Noether symmetry technique for direct and indirect curvature–matter coupling. For dust and perfect fluids, we evaluate exact solutions and construct their cosmological analysis through some cosmological parameters. We conclude that decelerated expansion is obtained for the quintessence model with a dust distribution, while a perfect fluid with dominating potential energy over kinetic energy leads to the current cosmic expansion for both phantom as well as quintessence models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号