首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gravitational collapse of a star is an important issue both for general relativity and astrophysics, which is related to the well-known “frozen star” paradox. This paradox has been discussed intensively and seems to have been solved in the comoving-like coordinates. However, to a real astrophysical observer within a finite time, this problem should be discussed in the point of view of the distant rest-observer, which is the main purpose of this Letter. Following the seminal work of Oppenheimer and Snyder (1939), we present the exact solution for one or two dust shells collapsing towards a pre-existing black hole. We find that the metric of the inner region of the shell is time-dependent and the clock inside the shell becomes slower as the shell collapses towards the pre-existing black hole. This means the inner region of the shell is influenced by the property of the shell, which is contrary to the result in Newtonian theory. It does not contradict the Birkhoff's theorem, since in our case we cannot arbitrarily select the clock inside the shell in order to ensure the continuity of the metric. This result in principle may be tested experimentally if a beam of light travels across the shell, which will take a longer time than without the shell. It can be considered as the generalized Shapiro effect, because this effect is due to the mass outside, but not inside as the case of the standard Shapiro effect. We also found that in real astrophysical settings matter can indeed cross a black hole's horizon according to the clock of an external observer and will not accumulate around the event horizon of a black hole, i.e., no “frozen star” is formed for an external observer as matter falls towards a black hole. Therefore, we predict that only gravitational wave radiation can be produced in the final stage of the merging process of two coalescing black holes. Our results also indicate that for the clock of an external observer, matter, after crossing the event horizon, will never arrive at the “singularity” (i.e. the exact center of the black hole), i.e., for all black holes with finite lifetimes their masses are distributed within their event horizons, rather than concentrated at their centers. We also present a worked-out example of the Hawking's area theorem.  相似文献   

2.
3.
Spherical gravitational collapse towards a black hole with non-zero tangential pressure is studied.Exact solutions corresponding to different equations of state are given.We find that when taking the tangential pressure into account,the exact solutions have three qualitatively different outcomes.For positive tangential pressure,the shell around a black hole may eventually collapse onto the black hole,or expand to infinity,or have a static but unstable solution,depending on the combination of black hole mass,mass of the shell and the pressure parameter.For vanishing or negative pressure,the shell will collapse onto the black hole.For all eventually collapsing solutions,the shell will cross the event horizon,instead of accumulating outside theeventhorizon,even if clocked by a distant stationary observer.  相似文献   

4.
We prove a theorem that characterizes a large family of non-static solutions to Einstein equations in N-dimensional space-time, representing, in general, spherically symmetric Type II fluid. It is shown that the best known Vaidya-based (radiating) black hole solutions to Einstein equations, in both four dimensions (4D) and higher dimensions (HD), are particular cases from this family. The spherically symmetric static black hole solutions for Type I fluid can also be retrieved. A brief discussion on the energy conditions, singularities and horizons is provided.  相似文献   

5.
I review progress in the last few years in constructing and analyzing many new classes of black holes that are possible in spacetimes of dimension larger than four.  相似文献   

6.
7.
We consider globally regular and black hole solutions in SU(2) Einstein–Yang–Mills–Higgs theory, coupled to a dilaton field. The basic solutions represent magnetic monopoles, monopole–antimonopole systems or black holes with monopole or dipole hair. When the globally regular solutions carry additionally electric charge, an angular momentum density results, except in the simplest spherically symmetric case. We evaluate the global charges of the solutions and their effective action, and analyze their dependence on the gravitational coupling strength. We show, that in the presence of a dilaton field, the black hole solutions satisfy a generalized Smarr type mass formula. B. Kleihaus gratefully acknowledges support by the German Aerospace Center. F. Navarro-Lérida gratefully acknowledges support by the Ministerio de Educación y Ciencia under grant EX2005-0078.  相似文献   

8.
9.
《Comptes Rendus Physique》2018,19(5):337-340
Here we obtain explicit black hole solutions in Extension Gravity models with high-order derivative terms, while the Lichnerowicz-type theorem simplifies our analysis by vanishing Ricci's scalar curvature. We find out two explicit static, spherical solutions that satisfy the presented action: the first one is the same usual Schwarzschild solution and the other one is the new non-Schwarzschild solution. It means that Schwarzschild's solution following the no-hair theorem can describe any black hole object on each gravity theory. Without considering the first law of thermodynamics for it, we show that the non-Schwarzschild solution is depending on its set of constants, and then we consider its entropy and other thermodynamic parameters for specific values of the constants.  相似文献   

10.
Davood Momeni 《Physics letters. A》2019,383(14):1543-1548
We found exact solutions for canonical classical and quantum dynamics for general relativity in Horwitz general covariance theory. These solutions can be obtained by solving the generalized geodesic equation and Schrödinger-Stueckelberg-Horwitz-Piron (SHP) wave equation for a simple harmonic oscillator in the background of a two dimensional dilaton black hole spacetime metric. We proved the existence of an orthonormal basis of eigenfunctions for generalized wave equation. This basis functions form an orthogonal and normalized (orthonormal) basis for an appropriate Hilbert space. The energy spectrum has a mixed spectrum with one conserved momentum p according to a quantum number n. To find the ground state energy we used a variational method with appropriate boundary conditions. A set of mode decomposed wave functions and calculated for the Stueckelberg-Schrodinger equation on a general five dimensional blackhole spacetime in Hamilton gauge.  相似文献   

11.
A new physical concept about globally regular solutions is suggested. The globally regular solutions corresponding to the Schwarzschild black hole and the Reissner-Nordström black hole are examined.  相似文献   

12.
We analyze the effect of higher derivative corrections to the near horizon geometry of the extremal vanishing horizon (EVH) black hole solutions in four dimensions. We restrict ourselves to a Gauss–Bonnet correction with a dilation dependent coupling in an Einstein–Maxwell-dilaton theory. This action may represent the effective action as it arises in tree level heterotic string theory compactified to four dimensions or the K3 compactification of type II string theory. We show that EVH black holes, in this theory, develop an AdS3 throat in their near horizon geometry.  相似文献   

13.
14.
We present a new class of black hole solutions with a minimally coupled scalar field in the presence of a negative cosmological constant. We consider an one-parameter family of self-interaction potentials parametrized by a dimensionless parameter g. When g = 0, we recover the conformally invariant solution of the Martinez–Troncoso–Zanelli (MTZ) black hole. A non-vanishing g signals the departure from conformal invariance. Thermodynamically, there is a critical temperature at vanishing black hole mass, where a higher-order phase transition occurs, as in the case of the MTZ black hole. Additionally, we obtain a branch of hairy solutions which undergo a first-order phase transition at a second critical temperature which depends on g and it is higher than the MTZ critical temperature. As g → 0, this second critical temperature diverges.  相似文献   

15.
The static black hole solutions to the Einstein-Maxwell equations are all spherically symmetric, as are many of the recently discovered black hole solutions in theories of gravity coupled to other forms of matter. However, counterexamples demonstrating that static black holes need not be spherically symmetric exist in theories, such as the standard electroweak model, with electrically charged massive vector fields. In such theories, a magnetically charged Reissner-Nordström solution with sufficiently small horizon radius is unstable against the development of a nonzero vector field outside the horizon. General arguments show that, for generic values of the magnetic charge, this field cannot be spherically symmetric. Explicit construction of the solution shows that it in fact has no rotational symmetry at all.This essay received the second award from the Gravity Research Foundation, 1995-Ed.  相似文献   

16.
Tensor and scalar unparticle couplings to matter have been shown to enhance gravitational interactions and provide corrections to the Schwarzschild metric and associated black hole structure. We derive an exact solution to the Einstein equations for vector unparticles, and conclusively demonstrate that these induce Riessner–Nordström (RN)-like solutions where the role of the “charge” is defined by a composite of unparticle phase space parameters. These black holes admit double-horizon structure, although unlike the RN metric these solutions have a minimum inner horizon value. In the extremal limit, the Hawking temperature is shown to vanish. As with the scalar/tensor case, the (outer) horizon is shown via entropy considerations to behave like a fractal surface of spectral dimension dH=2dUdH=2dU.  相似文献   

17.
18.
We construct finite mass, asymptotically flat black hole solutions in d=5 Einstein-Yang-Mills-Chern-Simons theory. Our results indicate the existence of a second order phase transition between Reissner-Nordstr?m solutions and the non-Abelian black holes which generically are thermodynamically preferred. Some of the non-Abelian configurations are also stable under linear, spherically symmetric perturbations.  相似文献   

19.
We perform a general study of the thermodynamic properties of static electrically charged black hole solutions of nonlinear electrodynamics minimally coupled to gravitation in three space dimensions. The Lagrangian densities governing the dynamics of these models in flat space are defined as arbitrary functions of the gauge field invariants, constrained by some requirements for physical admissibility. The exhaustive classification of these theories in flat space, in terms of the behaviour of the Lagrangian densities in vacuum and on the boundary of their domain of definition, defines twelve families of admissible models. When these models are coupled to gravity, the flat space classification leads to a complete characterization of the associated sets of gravitating electrostatic spherically symmetric solutions by their central and asymptotic behaviours. We focus on nine of these families, which support asymptotically Schwarzschild-like black hole configurations, for which the thermodynamic analysis is possible and pertinent. In this way, the thermodynamic laws are extended to the sets of black hole solutions of these families, for which the generic behaviours of the relevant state variables are classified and thoroughly analyzed in terms of the aforementioned boundary properties of the Lagrangians. Moreover, we find universal scaling laws (which hold and are the same for all the black hole solutions of models belonging to any of the nine families) running the thermodynamic variables with the electric charge and the horizon radius. These scale transformations form a one-parameter multiplicative group, leading to universal “renormalization group”-like first-order differential equations. The beams of characteristics of these equations generate the full set of black hole states associated to any of these gravitating nonlinear electrodynamics. Moreover the application of the scaling laws allows to find a universal finite relation between the thermodynamic variables, which is seen as a generalized Smarr law. Some particular well known (and also other new) models are analyzed as illustrative examples of these procedures.  相似文献   

20.
This paper provides a rigorous proof of the existence of an infinite number of black hole solutions to the Einstein-Yang/Mills equations with gauge groupSU(2), for any event horizon. It is also demonstrated that the ADM mass of each solutions is finite, and that the corresponding Einstein metric tends to the associated Schwarzschild metric at a rate 1/r 2, asr tends to infinity.Research supported in part by the NSF, Contract No. DMS-89-05205Research supported in part by the DE, Contract No. De-FG 02-88 EF 25065  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号