首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new multilayer organic light-emitting device (OLED) is fabricated by inserting kalium chloride (KCl) thin layer (1 nm) into hole transport layer (HTL). It has the configuration of ITO/NPB(15 nm)/KCl(1 nm)/NPB(25 nm)/Alq3(60 nm)/KCl(1 nm)/Al. The electroluminescence (EL) result shows that the performance of the novel device has obviously improvement compared with the normal structure (ITO/NPB(40 nm)/Alq3(60 nm)/KCl(1 nm)/Al). The EL and efficiency are about 1.4 and 1.3 times than that of conventional device. The suggested mechanism is that the KCl layer in N,N′-diphenyl-N,N′-bis(1-napthyl–phenyl)-1,1′-biphenyl-4,4′-diamine (NPB) can block the holes of NPB and then balance the holes and electrons. The better recombination of holes and electrons is beneficial to the enhancing properties of OLED.  相似文献   

2.
White organic light-emitting devices (WOLEDs) were fabricated with an ultrathin layer of rubrene inserted between NPB and TPBI. With a simple three-layer structure of ITO/NPB(50 nm)/rubrene(0.1 nm)/TPBI(50 nm)/LiF/Al, a white light with CIE coordinates of (0.31, 0.30) were generated. The device gave a maximum luminance efficiency of 2.04 lm/W at 5 V. Furthermore, with a multilayer structure of ITO/m-MTDATA(30 nm)/NPB(20 nm)/rubrene(0.1 nm)/TPBI(40 nm)/Alq3(10 nm)/LiF/Al, the device reached a maximum luminance efficiency of 4.29 lm/W at 4 V and the luminance could exceed 10 000 cd/m2 at 10 V.  相似文献   

3.
Organic light-emitting diodes (OLEDs) with high luminance efficiency were successfully fabricated using the LiF/N,N′-bis(1-naphyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) carrier balance structures. It was found that the insertion of the LiF/NPB carrier balance structures can balance the charge injection and transport, which is helpful in enhancing the performance of OLEDs. It was also found that we can achieve the best performance from the OLED with three pairs of LiF/NPB (0.3 nm/15 nm) structures. The luminance and transport efficiency were both enhanced with the increase in the numbers of pairs of LiF/NPB carrier balance structures. We can attribute the improvement to the better carrier balance at the device interface.  相似文献   

4.
高效率的有机电致发光器件   总被引:2,自引:0,他引:2  
有机电致发光器件 (OL EDs)的发光机理包括电子和空穴从电极的注入、激子的形成及复合发光 ,其中 ,空穴和电子的注入平衡是非常重要的。为了平衡载流子的注入以得到高效率和稳定性好的器件 ,人们不仅使用了电子注入更为有效的 L i F/ Al[1] 和 Cs F/ Al[2 ] 等复合电极 ,同时也使用了空穴缓冲层 ,如 S.A.Van Slyke等 [3]在ITO和 NPB之间使用 Cu Pc,使得器件的稳定性得到了明显的提高 ;A.Gyoutoku等[4 ] 用碳膜使器件的半寿命超过 3 5 0 0小时 ;最近 ,Y.Kurosaka等 [5]和 Z.B.Deng[6 ]分别在 ITO和空穴传输层之间插入一薄层 Al…  相似文献   

5.
In this paper, a new white organic light-emitting device (WOLED) with multilayer structure has been fabricated. The structure of devices is ITO/N, N-bis-(1-naphthyl)-N, N-diphenyl-1, 1′-biphenyl-4, 4′-diamine (NPB) (40 nm)/NPB: QAD (1%): DCJTB (1%) (10 nm) /DPVBi (10 nm) /2, 9-dimethyl, 4, 7-diphenyl, 1, 10-phenanthroline (BCP) (d nm)/tris-(8-hydroxyquinoline) aluminium (Alq3)(50-d nm)/LiF (1 nm)/Al (200 nm). In our devices, a red dye 4-(dicyanomethylene)-2-t-butyl-6 (1, 1, 7, 7-tetramethyl julolidyl-9-enyl)-4H-pyran (DCJTB) and a green dye quinacridone (QAD) were co-doped into NPB. The device with 8 nm BCP shows maximum luminance of 12 852 cd/m2 at 20 V. The current efficiency and power efficiency reach 9.37 cd/A at 9 V and 3.60 lm/W at 8 V, respectively. The thickness of the blocking layer permit the tuning of the device spectrum to achieve a balanced white emission with Commission International de’Eclairage (CIE) chromaticity coordinates of (0.33,0.33). The CIE coordinates of device change from (0.3278, 0.3043) at 5 V to (0.3251, 0.2967) at 20 V that are well in the white region, which is largely insensitive to the applied bias.  相似文献   

6.
刘荣  张勇  雷衍连  陈平  张巧明  熊祖洪 《物理学报》2010,59(6):4283-4289
制备了有LiF插层的有机发光二极管,以八羟基喹啉铝(Alq3)作为电子传输层,N, N′-二苯基-N, N′-二(1-萘基)-1,1′-联苯-4,4′-二胺(NPB)作为空穴传输层.通过改变Alq3与NPB间LiF插层的厚度,研究了不同温度下器件的光电特性及电致发光的磁场效应.测量结果表明:LiF插层可以影响器件内部载流子的输运和激发态的形成.较厚的插层阻碍了空穴的传输,使器件的电流效率变低.但实验中发现, 关键词: LiF插层结构 磁场效应 三重态激子  相似文献   

7.
This study presents a new design that uses a combination of a graded hole transport layer (GH) structure and a gradually doped emissive layer (GE) structure as a double graded (DG) structure to improve the electrical and optical performance of white organic light-emitting diodes (WOLEDs). The proposed structure is ITO/m-MTDATA (15 nm)/NPB (15 nm)/NPB: 25% BAlq (15 nm)/NPB: 50% BAlq (15 nm)/BAlq: 0.5% Rubrene (10 nm)/BAlq: 1% Rubrene (10 nm)/BAlq: 1.5% Rubrene (10 nm)/Alq3 (20 nm)/LiF (0.5 nm)/Al (200 nm). (m-MTDATA: 4,4′,4″ -tris(3-methylphenylphenylamino)triphenylamine; NPB: N,N′-diphenyl-N,N′-bis(1-naphthyl-phenyl)-(1,1′-biphenyl)-4,4′-diamine; BAlq: aluminum (III) bis(2-methyl-8-quinolinato) 4-phenylphenolate; Rubrene: 5,6,11,12-tetraphenylnaphthacene; Alq3: tris-(8-hydroxyquinoline) aluminum). By using this structure, the best performance of the WOLED is obtained at a luminous efficiency at 11.8 cd/A and the turn-on voltage of 100 cd/m2 at 4.6 V. The DG structure can eliminate the discrete interface, and degrade surplus holes, the electron-hole pairs are efficiently injected and balanced recombination in the emissive layer, thus the spectra are unchanged under various drive currents and quenching effects can be significantly suppressed. Those advantages can enhance efficiency and are immune to drive current density variations.  相似文献   

8.
Organic red emitting diode was fabricated by using 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1 H,5H-benzo[ij]quinolizin-8-yl)vinyl]-4H-pyran (DCM)-doped tri-(8-quinolitolato) aluminum (Alq3) as emitter with the structure of G/ITO/NPB(25 nm)/DCM:Alq3(55 nm)/Alq3(20 nm)/LiF (1.2 nm)/Al(84 nm), (glass/indium–tin-oxide/4,4-bis-[N-(1-naphthyl)-N-phenyl-amino]biphenyl, G/ITO/NPB), the wavelength of the maximal emission of which is 615 nm. By introducing cavity to Organic light emitting diode (OLED), we got pure red emitting diode with wavelength of the maximal emission of 621 nm and full-width at half-maximum (FWHM) of 27 nm. As far as we know, it is the best result in the dye-doped organic red emitting diode. We also made a device of G/ITO/NPB(25 nm)/DCM:Alq3(29 nm)/DCM:PBD(26 nm)/Alq3(20 nm)/LiF(1.2 nm)/Al(84 nm), in order to compare the performance of Alq3 with that of 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (PBD) as host material. It was found that the performance of device A is better than that of C both in brightness and color purity,as well as in EL efficiency.  相似文献   

9.
《Current Applied Physics》2010,10(4):1103-1107
Highly efficient and stable OLED device in which hole-drift current and electron-drift current are balanced was fabricated. Drift current characteristics according to the thickness of organic layer were examined using the device with ITO/m-MTDATA/NPB/Al structure that can only move the hole and the device with Al/LiF/Alq3/LiF/Al structure that can only move the electron. Using the result of such examination, green device with balanced drift current was produced. Device with the structure of m-MTDATA (80 nm)/NPB (20 nm)/C-545T (3%) doped Alq3 (5 nm)/Alq3 (59 nm)/LiF (1 nm)/Al (200 nm) showed color purity of (0.309, 0.643) and high efficiency of 7.0 lm/W (14.4 cd/A). Most of light emission was observed inside the green emitting layer. Through the result of EL spectrum for the device also including red emitting layer, same result could be obtained. The device with balanced drift current also showed half life-time of 175 h for initial luminance of 3000 cd/m2, which is more stable in comparison to the device without balanced drift current.  相似文献   

10.
Al/Ni bilayer cathode was used to improve the electroluminescent (EL) efficiency and stability in N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′ biphenyl 4,4′-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3)-based organic light-emitting diodes. The device with LiF/Al/Ni cathode achieved a maximum power efficiency of 2.8 lm/W at current density of 1.2 mA/cm2, which is 1.4 times the efficiency of device with the state-of-the-art LiF/Al cathode. Importantly, the device stability was significantly enhanced due to the utilization of LiF/Al/Ni cathode. The lifetime at 30% decay in luminance for LiF/Al/Ni cathode was extrapolated to 400 h at an initial luminance of 100 cd/m2, which is 10 times better than the LiF/Al cathode.  相似文献   

11.
One of the porphyrin derivatives, meso-tetraphenylporphyrin (TPP), has been synthesized and examined as an emitter material (EM) for efficient fluorescent red organic light-emitting diodes (OLEDs). By inserting a tungsten oxide (WO3) layer into the interface of anode (ITO) and hole transport layer N,N′-Di-[(1-napthyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine (NPB) and by using fullerene (C60) in contact with a LiF/Al cathode, the performance of devices was markedly improved. The current density–voltage–luminance (JVL) characterizations of the samples show that red OLEDs with both WO3 and C60 as buffer layers have a lower driving voltage and higher luminance compared with the devices without buffer layers. The red OLED with the configuration ITO/WO3 (3 nm)/NPB (50 nm)/TPP (60 nm)/BPhen (30 nm)/C60 (5 nm)/LiF (0.8 nm)/Al (100 nm) achieved the high luminance of 6359 cd/m2 at the low driving voltage of 8 V. At a current density of 20 mA/cm2, a pure red emission with CIE coordinates of (0.65; 0.35) is observed for this device. Moreover, a power efficiency of 2.07 lm/W and a current efficiency of 5.17 cd/A at 20 mA/cm2 were obtained for the fabricated devices. The study of the energy level diagram of the devices revealed that the improvement in performance of the devices with buffer layers could be attributed to lowering of carrier-injecting barrier and more balanced charge injection and transport properties.  相似文献   

12.
A novel structure of organic light-emitting diode was fabricated by inserting a molybdenum trioxide (MoO3) layer into the interface of hole injection layer copper phthalocyanine (CuPc) and hole transport layer N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1,1′-biphenyl-4,4′-diamine (NPB). It has the configuration of ITO/CuPc(10 nm)/MoO3(3 nm)/NPB(30 nm)/ tris-(8-hydroxyquinoline) aluminum (Alq3)(60 nm)/LiF(0.5 nm)/Al. The current density-voltage-luminance (J-V-L) performances show that this structure is beneficial to the reduction of driving voltage and the enhancement of luminance. The highest luminance increased by more than 40% compared to the device without hole injection layer. And the driving voltage was decreased obviously. The improvement is ascribed to the step barrier theory, which comes from the tunnel theory. The power efficiency was also enhanced with this novel device structure. Finally, “hole-only” devices were fabricated to verify the enhancement of hole injection and transport properties of this structure.  相似文献   

13.
《Current Applied Physics》2010,10(5):1326-1330
This paper describes the white organic light-emitting diodes (WOLEDs) made from a benzothiazole derivative, N-(4-(benzo[d]thiazol-2-yl)phenyl)-N-phenylnaphthalen-1-amine (BPNA). The bright yellowish-white emission was obtained from a non-doped triple-layer device: ITO/NPB (40 nm)/BPNA (50 nm)/Alq3 (40 nm)/LiF/Al. The Commission Internationale de L’Eclairage (CIE) coordinates of the device were (0.24, 0.36) at 10 V. The maximum brightness of the device was 9225 cd/m2 at 14.4 V. A current efficiency of 3.08 cd/A, a power efficiency of 1.21 lm/W and an external quantum efficiency of 1.18% at a driving current density of 20 mA/cm2 were achieved. WOLED with a DCJTB-doped structure of ITO/TcTa/BPNA/BPNA: DCJTB (0.5%)/BPNA/BCP/Alq3/LiF/Al was fabricated in comparison with the non-doped device. The device emitted bright white light with the CIE coordinates of (0.33, 0.29) at 10 V and a maximum luminance of 7723 cd/m2 at 14.8 V.  相似文献   

14.
We demonstrate a promising single layer white light-emitting device using a dimeric trimeric phenylenvinylene derivative as emitting layer. The broad electroluminescence emission band is composed of blue component from singlet excited state of individual 2, 5, 2′, 5′-tetra (p-trifluoromethylstyryl)-biphenyl molecule and long-wavelength electromer emission in electroluminescence. Therefore, white-light emission can also be obtained with a typical three-layer structure of ITO/NPB (50 nm)/TFM-TSB (50 nm)/Alq3 (30 nm)/LiF/Al device. The maximum brightness of this device is 809 cd/m2 at 217 mA/cm2 and 13 V, and the maximum luminous efficiency is 1.49 cd/A at 11 mA/cm2 and 8 V.   相似文献   

15.
In a device structure of ITO/hole-injection layer/N,N′-biphenyl-N,N′-bis-(1-naphenyl)-[1,1′-biphthyl]4,4′-diamine(NPB)/tris(8-hydroxyquinoline)aluminum(Alq3)/Al, we investigated the effect of the hole-injection layer on the electrical characteristics and external quantum efficiency of organic light-emitting diodes. Thermal evaporation was performed to make a thickness of NPB layer with a rate of 0.5–1.0 Å/s at a base pressure of 5 × 10−6 Torr. We measured current–voltage characteristics and external quantum efficiency with a thickness variation of the hole-injection layer. CuPc and PVK buffer layers improve the performance of the device in several aspects, such as good mechanical junction, reducing the operating voltage, and energy band adjustment. Compared with devices without a hole-injection layer, we found that the optimal thickness of NPB was 20 nm in the device structure of ITO/NPB/Alq3/Al. By using a CuPc or PVK buffer layer, the external quantum efficiencies of the devices were improved by 28.9% and 51.3%, respectively.  相似文献   

16.
This study examined the electrical and optical properties of red OLEDs (organic light-emitting diodes) with a four-layer structure, ITO/amorphous fluoropolymer (AF)/N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1-biphenyl-4,4′-diamine (TPD)/R-H:R-D/lithium fluoride (LiF)/Al, containing a hole injection material, AF (amorphous fluoropolymer) and an electron injection layer material, LiF. Compared to the basic structure (two-layer structure), the brightness and luminous efficiency of the four-layer structure, ITO/TPD/R-H:R-D/Al, increased approximately 100 times (30,000 lm/m2) and 150 times (51 lm/W), respectively, with an applied voltage. The excellent efficiency of the external proton was also increased 150 times (0.51%). That is, the hole and electron injection layers improved the surface roughness of ITO and Al, and the interfacial physical properties. In addition, these layers allowed the smooth injection of holes and electrons. The luminance, luminous efficiency and external quantum efficiency were attributed to an increase in the recombination rates.  相似文献   

17.
黄迪  徐征  赵谡玲 《物理学报》2014,63(2):27301-027301
采用poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-?uoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]](PTB7)作为有机发光二极管器件的阳极修饰层,制备了结构为indium tin oxide(ITO)/PTB7(不同浓度)/N,N’-Bis(naphthalen-1-yl)-N,N’-bis(phenyl)benzidine(NPB,40 nm)/8-hydroxyquinoline(Alq3,60 nm)/LiF(1 nm)/Al的系列器件,同时研究了不同浓度的PTB7对器件性能的影响.PTB7的最佳浓度为0.25 mg/mL,器件性能得到明显的改善,起亮电压为4.3 V.当驱动电压为14.6 V时,最大亮度为45800 cd/m2,最大电流效率为9.1 cd/A.与没有PTB7修饰的器件相比,其起亮电压降低了1.9 V,最高亮度提升了78.5%.器件性能提高归因于PTB7的插入使得空穴注入和传输能力大大改善.  相似文献   

18.
利用电子传输性能良好的苯并噻唑螯合锌(Zn(BTZ)2)作为蓝光层,通过设计不同类型的空穴传输层并试验不同厚度的发光层后,制作了一种最佳厚度的双发光层白色电致发光器件:氧化铟锡(ITO)/N-N′-双(3-甲基苯基)-N-N′-二苯基-1-1′-二苯基-4-4′-二胺(TPD)∶N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)(1∶0.0 关键词: 厚度 空穴传输层 白光 载流子  相似文献   

19.
空穴传输层对有机电致发光器件性能的影响   总被引:3,自引:1,他引:2  
袁桃利  张方辉  张微  黄晋 《发光学报》2013,34(11):1457-1461
制备了结构为ITO/MoO3(40 nm)/空穴传输层/CBP:Ir(ppy)2acac(8%)(30 nm)/BCP(10 nm)/Alq3(40 nm)/LiF(1 nm)/Al(100 nm)的器件,其中Ir(ppy)2acac为绿色磷光染料,空穴传输层分别为TAPC(50 nm)、TAPC(40 nm)/TCTA(10 nm)、NPB(50 nm)、NPB(40 nm)/TCTA(10 nm)。通过使用4种不同结构的空穴传输层,对器件的发光性能进行了研究。结果表明,空穴传输层对器件的发光性能有较大影响。在电压为6 V、电流密度为2 mA/cm2的条件下,4种结构的器件的电流效率分别为52.5,67.8,35.6,56.6 cd/A。其原因是TAPC/TCTA及NPB/TCTA能级结构更有利于空穴对发光层的注入而且TAPC拥有较高的空穴迁移率;另外,TAPC及TCTA拥有较高的LUMO和三线态能量,可以有效地将电子和三线态激子束缚在发光层内,增加绿光染料的复合发光几率。所制备的器件均表现出良好的色坐标稳定性。  相似文献   

20.
田苗苗  李春杰  贺小光  于立军  范翊  王宁 《发光学报》2012,33(11):1252-1257
以高功函数的掺杂钛酸镧的氧化铟薄膜(ILTO)及氧化铟锡(ITO)作为阳极,制备了Glass/anode/NPB/Alq3/LiF/Al结构的有机电致发光器件。得益于ILTO较好的掺杂性、低的表面粗糙度、高的可见光透过率以及高的有效功函数,以ILTO为阳极的有机电致发光器件的开路电压得到降低,最高亮度、电流效率、功率效率以及外量子效率均获得了成倍的提高。研究结果表明,ILTO是一种潜在的光学窗口材料,有望在各种光电器件中得到广泛的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号